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ABSTRACT
We give a fully polynomial-time approximation scheme (FPTAS)

to count the number of q-colourings for k-uniform hypergraphs

with maximum degree ∆ if k ≥ 28 and q > 315∆
14

k−14 . We also

obtain a polynomial-time almost uniform sampler if q > 798∆
16

k−16/3
.

These are the first approximate counting and sampling algorithms

in the regime q ≪ ∆ (for large ∆ and k) without any additional

assumptions. Our method is based on the recent work of Moitra

(STOC, 2017). One important contribution of ours is to remove the

dependency of k and ∆ in Moitra’s approach.
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• Mathematics of computing → Hypergraphs; • Theory of
computation → Generating random combinatorial structures; De-
sign and analysis of algorithms;
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1 INTRODUCTION
Hypergraph colouring is a classic and important topic in combina-

torics. Its study was initiated by Erdős’ seminal result [Erd63], a

sufficient upper bound on the number of edges so that a uniform

hypergraph is 2-colourable. Many important tools in the probabilis-

tic method have been developed around this subject, such as the

Lovász local lemma [EL75], and the Rödl nibble [Röd85].
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In this paper, we consider the problem of approximately count-

ing colourings in k-uniform hypergraphs. The most successful ap-

proach to approximate counting is Markov chain Monte Carlo

(MCMC). See [DFK91, JS93, JSV04] for a few famous examples. In-

deed, MCMC has been extensively studied for graph colourings in

low-degree graphs. Jerrum [Jer95] showed that the simple and natu-

ralMarkov chain, Glauber dynamics, mixes rapidly, ifq > 2∆, where
q is the number of colours and ∆ is the maximum degree of the

graph. As a consequence, there is a fully polynomial-time random-
ized approximation scheme (FPRAS) for the number of colourings if

q > 2∆. This result initiated a series of research and the best bound

in general, due to Vigoda [Vig00], requires that q > 11/6∆. It is con-
jectured that Glauber dynamics is rapidly mixing if q > ∆ + 1, the
“freezing” threshold, but current evidences typically require extra

conditions in addition to the maximum degree [HV03, DFHV13].

On the flip side, see [GSV15] for some (almost tight) NP-hardness

results.

In k-uniform hypergraphs, the Markov chain approach still

works, if q > C∆ for C = 1 when k ≥ 4 and C = 1.5 when

k = 3 [BDK08, BDK06]. However, the local lemma implies that

a hypergraph is q-colourable if q > C∆1/(k−1)
for some constant

C . This threshold is much smaller than ∆ when ∆ is large. Moser

and Tardos’ algorithmic version of the local lemma [MT10] implies

that we can efficiently find a q-colouring under the same condition.

Indeed, algorithmic local lemma has been a highly active area. See

[KS11, HSS11, HS13a, HS13b, HV15, AI16, Kol16, CPS17, HLL
+
17]

for various recent development.

In view of the success of algorithmic local lemma, it is natural to

wonder, whether we can also randomly generate hypergraph colour-

ings, or equivalently, approximately count their number, beyond

the q ≍ ∆ bound and approaching q ≍ ∆1/(k−1)
? Unfortunately,

designing Markov chains quickly runs into trouble if q ≪ ∆. “Freez-
ing” becomes possible in this regime (see [FM11] for examples

1
),

and the state space of proper hypergraph colourings may not be

connected via changing the colour of a single vertex, the building

block move of Glauber dynamics.

The only successful application of MCMC in this regime is due

to Frieze et al. [FM11, FA17], which requires that q > max{Ck logn,

500k3∆1/(k−1)} and the hypergraph is simple.
2
Here q = Ω(logn)

is necessary to guarantee that “frozen” colourings are not prevalent.

1
Interestingly, to prove the existence of frozen colourings, we also need to appeal to

the local lemma.

2
A hypergraph is simple if the intersection of any two hyperedges contains at most

one vertex.
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Furthermore, it is reasonable to believe that simple hypergraphs

are much easier algorithmically than general ones, since their chro-

matic numbers are O
(

∆
log∆

)
1/(k−1)

[FM13], significantly smaller

than the bound implied by the local lemma, and related Glauber dy-

namics for hypergraph independent sets works significantly better

in simple hypergraphs than in general ones [HSZ16].

Our main result is a positive step beyond the freezing barrier

in general k-uniform hypergraphs. Our result also answers some

open problems raised in [FM11].

Theorem 1. For integers ∆ ≥ 2, k ≥ 28, and q > 315∆
14

k−14 ,
there is an FPTAS for q-colourings in k-uniform hypergraphs with
maximum degree ∆.

When k and ∆ are large, our result is better than the Markov

chain results [BDK08, BDK06] and gets into the freezing regime.

The exponent of our polynomial time bound depends on the con-

stants k and ∆.
Our method is based on an intriguing result shown by Moitra

[Moi17] recently, who gave fully polynomial-time deterministic ap-
proximation schemes (FPTAS) to count satisfying assignments of

k-CNF formulas in the local lemma regime. It is not hard to see

that Moitra’s approach is rather general, and indeed it works for

hypergraph colourings if some strong form of the local lemma con-

dition holds, and k ≥ C log∆ for some constant C , without any
requirement on the connectedness of the state space. Unfortunately,

the requirement that k ≥ C log∆ is necessary for a “marking” argu-

ment to work in Moitra’s approach. This is not an issue for k-CNF
formulas, as in that setting the (strong) local lemma condition dic-

tates that k ≥ C log∆. However, for hypergraph colourings, we

generally want k and ∆ to be two independent parameters. Marking

is no longer possible in our general situation.

We briefly describe Moitra’s approach before introducing our

modifications. The first observation is that if the maximum degree

is much smaller than the local lemma threshold, variables in the

target distribution are very close to uniform. As a consequence,

if we couple two copies of the Gibbs distribution while giving

different colours at a particular vertex, sequentially and in a vertex-

wise maximal fashion, the discrepancy in the resulting coupling

will be logarithmic with high probability. Then, one can set up a

linear program to do binary search for the marginal probability,

where the variables to solve mimic the transition probabilities in

this coupling. The marking procedure ensures these locally (almost-

)uniform properties to hold at any point of the coupling process

above, by finding a good set of vertices so that we only couple these

vertices and nothing goes awry.

Since marking is no longer possible in our setting, we take an

adaptive approach in the coupling procedure to ensure local (almost-

)uniform properties, rather than marking what we are going to

couple in advance. Although similar in spirit, our proof details are

rather different from those by Moitra [Moi17]. Since this coupling

(or the analysis thereof) is used repeatedly in the whole algorithm,

we have to rework almost all other proofs as well. In addition, quite

a few steps (or the success thereof) inMoitra’s approach seem rather

mysterious. Our proofs unravel some of those mysteries, streamline

the argument, and tighten the bounds at various places. Hopefully

they also shed some light on where the limit of the method is.

The outline above only gives an approximation of the marginal

probabilities. Due to the lack of marking, we also need to provide

new algorithms for approximate counting and sampling. For ap-

proximate counting, we use the local lemma again to find a good

ordering of the vertices so that the standard self-reduction goes

through. For sampling, we use the marginal algorithm as an oracle,

to faithfully simulate the true distribution, in an adaptive fashion

similar to the coupling procedure. At the end of this process, not all

vertices will be coloured. However we show that with high proba-

bility, all remaining connected components have logarithmic sizes

and we fill those in by brutal force enumeration. The threshold we

obtain for sampling is larger than the one for approximate counting.

Theorem 2. For integers ∆ ≥ 2, k ≥ 28, andq > 798∆
16

k−16/3 , there
is a sampler whose distribution is ε-close in total variation distance to
the uniform distribution on all proper colourings, with running time
polynomial in the number of vertices and 1/ε .

The correlation decay approach of approximate counting [Wei06,

BG08] have been successfully applied to graph colouring problems

[LY13, LYZZ17] or hypergraph problems [BGG
+
16], but it seems

difficult to combine the two in our setting. More recently, there

are other progresses with respect to approximate counting in the

local lemma regime [HSZ16, GJL17, GJ17]. However, these results

do not directly apply to our situation either. Indeed, our result

can be seen as one step further to linking the local lemma with

approximate counting, as we made Moitra’s approach applicable in

a more general setting, where the constraint size does not have to be

directly related to the probability of bad events or the dependency

degree. However, there still seem to be a few difficulties, such as

constraints that cannot be satisfied by partial assignments, to go

further towards the most general abstract setting of the local lemma,

and this is an interesting direction for the future.

The paper is organized as follows. Section 2 introduces basic

notions as well as the local lemma, and Section 3 introduces the

coupling procedure. We give the algorithm of estimating marginal

probabilities in Section 4, and use this algorithm to do counting and

sampling in Sections 5 and 6, respectively. To maintain flexibility,

in Sections 3, 4, 5, and 6, we keep track of various parameters, and

all parameters are optimized in Section 7. We conclude in Section 8

by describing the bottleneck of the current approach, and outlining

the difficulties for further generalizations.

2 PRELIMINARY
A hypergraph is a pair H = (V , E) where V is the collection of

vertices and E ⊆ 2
V
is the set of hyperedges. We say a hypergraph

H is k-uniform if every e ∈ E satisfies |e | = k . Let q ∈ N be the

number of available colours. A proper colouring of H is an assign-

ment σ ∈ [q]V so that every hyperedge in E is not monochromatic,

namely that σ satisfies |{σ (v) : v ∈ e}| > 1 for every e ∈ E.
Although our goal is to count colourings in k-uniform hyper-

graphs, as the algorithm progresses, vertices will be pinned to

some fixed value. Therefore we will work with a slightly more

general problem, namely hypergraph colouring with pinnings. For-

mally, an instance of hypergraph colouring with pinnings is a pair
(H (V , E),P) where P = {Pe ⊆ [q] : e ∈ E} and Pe is the set of

colours that are already present (pinned) inside the edge e . In the
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intermediate steps of our algorithms, P will be induced by pin-

ning a subset of vertices, but it is more convenient to consider

this slightly more general setup. For an instance with pinning,

a colouring σ ∈ [q]V is proper if for every e ∈ E, it holds that
|{σ (v) : v ∈ e} ∪ Pe | > 1.

Denote by C the set of all proper colourings of (H ,P). For any
C′ ⊆ C, we use µC′ to denote the uniform distribution over C′.

Since there is no weight involved, µC is our targeting Gibbs distri-

bution.

Let µ be a distribution over colourings ([q] ∪ {−})V , where “−”
denotes that the vertex is not coloured (yet). We say µ(·) is pre-Gibbs
with respect to µC if for every σ ∈ C,

1

|C|
= µC(σ ) =

∑
σ ′∈([q]∪{−})V

σ |=σ ′

µ
(
σ ′

)
· µC

(
σ

�� σ ′),
where σ |= σ ′ means that the full colouring σ is consistent with

the partial one σ ′. In other words, if we draw a partial colouring σ ′

from a pre-Gibbs distribution µ, and then complete σ ′ uniformly

conditioned on coloured vertices (with respect to µC ), the resulting
distribution is exactly µC . Note that in our definition we do not

require the support of µ to be all partial colourings.

2.1 Lovász Local Lemma
Let (H (V , E),P) be an instance of hypergraph colourings andq ∈ N
be a non-negative integer. We use ∆ to denote the maximum degree

of H . Although we consider k-uniform hypergraphs in Theorem

1, in both the sampling and the counting procedure we will pin

vertices gradually. Throughout the section, we assume that for

every e ∈ E, k ′ ≤ |e | ≤ k . These are the instances that will emerge

in Theorem 20 and Theorem 22.

Let Lin(H ) be the line graph of H , that is, vertices in Lin(H ) are
hyperedges in H and two hyperedges are adjacent if they share

some vertex inH . The “dependency graph” of our problem is simply

the line graph of H . For e ∈ E, let Γ(e) be the neighbourhood of e ,
namely the set {e ′ | e ∩ e ′ , ∅}. It is clear that the maximum degree

of Lin(H ) is at most k(∆− 1). Hence |Γ(e)| ≤ k(∆− 1) for any e ∈ E.
With a little abuse of notation, forv ∈ V , let Γ(v) be the set of edges
in E incident to v , i.e., Γ(v) := {e ∈ E : v ∈ e}. Furthermore, for

any event B depending a set of vertices ver(B), let Γ(B) be the set
of dependent sets of B, i.e., Γ(B) = {e | e ∩ ver(B) , ∅}.

The (asymmetric) Lovász Local Lemma (proved by Lovász and

published by Spencer [Spe77]) states a sufficient condition for the

existence of a proper colouring. Note that in the following Pr [·]
refers to the product distribution where every vertex is coloured

uniformly and independently.

Theorem 3. If there exists an assignment x : E → (0, 1) such that
for every e ∈ E we have

Pr [e is monochromatic] ≤ x(e)
∏

e ′∈Γ(e)

(
1 − x(e ′)

)
, (1)

then a proper colouring exists.

When the condition of Theorem 3 is met, we actually have good

control over any event in the uniform distribution µC due to the

next theorem, shown in [HSS11].

Theorem 4. If (1) holds for every e ∈ E, then for any event B, it
holds that

µC(B) ≤ Pr [B]
∏

e ∈Γ(B)

(1 − x(e))−1.

Theorem 4 also allows us to have some quantitative control over

the marginal probabilities.

Lemma 5. If k ′ ≤ |e | ≤ k for any e ∈ E, t ≥ k and q ≥ (et∆)
1

k′−1 ,
then for any v ∈ V and any colour c ∈ [q],

Pr
σ∼µC

[σ (v) = c] ≤
1

q

(
1 +

4

t

)
.

Proof. Let x(e) = 1

t∆ for every e ∈ E. We first verify that (1)

holds. Since |Γ(e)| ≤ k(∆ − 1) and t ≥ k ,

x(e)
∏

e ′∈Γ(e)

(
1 − x(e ′)

)
≥

1

t∆

(
1 −

1

t∆

)k(∆−1)
≥

1

et∆
≥ q1−k

′

≥ Pr [e is monochromatic] .

Hence, Theorem 4 applies. Then,

Pr
σ∼µC

[σ (v) = c] ≤
1

q

(
1 −

1

t∆

)−∆
≤

1

q
exp

(
2

t

)
≤

1

q

(
1 +

4

t

)
. □

Unfortunately, Theorem 4 does not give lower bounds directly.

We will instead bound the probability of blocking v to have colour

c .

Lemma 6. If k ′ ≤ |e | ≤ k for any e ∈ E, t ≥ k , and q ≥ (et∆)
1

k′−1 ,
then for any v ∈ V and any colour c ∈ [q],

Pr
σ∼µC

[σ (v) = c] ≥
1

q

(
1 −

1

t

)
.

Proof. Fix v and c . For every e ∈ Γ(v), let Blocke be the event
that vertices in e other than v all have the colour c . Clearly, condi-
tioned on none of Blocke occurring, the probability of v coloured c
is larger than 1/q. Hence we have that

Pr
σ∼µC

[σ (v) = c] ≥
1

q

©«1 −
∑

e ∈Γ(v)

µC(Blocke )
ª®¬ . (2)

Clearly Pr [Blocke ] = q1−|e | ≤ q1−k
′

. Again let x(e) = 1

t∆ for

every e ∈ E and (1) holds. Since |Γ(Blocke )| ≤ k(∆ − 1) + 1 and

t ≥ k , by Theorem 4,

µC(Blocke ) ≤ q1−k
′

(
1 −

1

t∆

)−k (∆−1)−1
≤

1

t∆
. (3)

Plugging (3) into (2) yields

Pr
σ∼µC

[σ (v) = c] ≥
1

q

(
1 −

1

t

)
. □

Combining Lemma 5 and Lemma 6, we obtain the following

result.

Lemma 7. If k ′ ≤ |e | ≤ k for any e ∈ E, t ≥ k and q ≥ (et∆)
1

k′−1 ,
then for any v ∈ V and any colour c ∈ [q],

1

q

(
1 −

1

t

)
≤ Prσ∼µC [σ (v) = c] ≤

1

q

(
1 +

4

t

)
.
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3 THE COUPLING
Recall that a partial colouring is an assignment σ ∈ ([q] ∪ {−})V

where “−” denotes an unassigned colour. Fix a vertexv ∈ V and two

distinct colours c1, c2 ∈ [q], we define two initial partial colourings

X0 and Y0 that assign v with colours c1 and c2 respectively and let

all other vertices be unassigned. We use C1 and C2 to denote the

set of proper colourings with v fixed to be c1 and c2 respectively.
For a partial colouring X , we use CX to denote the set of proper

colourings consistent with X .

Moitra [Moi17] introduced the following intriguing idea (in the

setting of CNF) to compute the ratio of marginal probabilities on

v . Couple µC1 and µC2 in a sequential way. Start from v , where
the colours differ, and proceed in a breadth-first search manner,

vertex by vertex. At each vertex we draw a colour from µC1 and µC2 ,
respectively, conditioned on all the existing colours, and couple

them maximally. The process ends when the set of vertices coupled

successfully form a cut separatingv from uncoloured vertices. If ev-

ery vertex we encounter has its marginal distribution close enough

to the uniform distribution, then this coupling process terminates

quickly with high probability. These local almost-uniform proper-

ties are guaranteed by Lemma 7. Then Moitra sets up a clever linear

program (LP), where the variables mimic transition probabilities

during the coupling (but in some conditional way), and shows that

the LP is sufficient to recover the marginal distribution at v by a

binary search.

We apply the same idea here for hypergraph colourings. How-

ever, one needs to carefully implement the coupling to guarantee

that all marginal distributions encountered are close enough to uni-

form. Formally, we describe our coupling process in Algorithm 1.

The coupling process applies to hypergraphs with edge size be-

tween k1 and k for some parameter 0 < k1 ≤ k . There is another
parameter 0 < k2 < k1 and all these parameters will be set in

Section 7. The output is a pair of partial colourings (X ,Y ) extend-
ing X0 and Y0 respectively. Notice that in order to implement the

coupling process, we fix an arbitrary ordering of edges and vertices

in advance.

The set V
col

consists of all coloured vertices. Intuitively, the set

V1 contains vertices that have failed the coupling and V2 is its com-

plement. Once a hyperedge is satisfied by both partial colourings

X and Y , it has no effect any more and is thus removed.

The main difference from Moitra’s coupling [Moi17] is that we

cannot choose what vertices to couple in advance (“marking”).

Instead, we take an adaptive approach to ensure that no hyperedge

becomes too small. Once k2 vertices of a hyperedge are coloured, all
the rest vertices are considered “failed” in the coupling (namely they

are added to V1). However these failed vertices are left uncoloured.

Algorithm 1 outputs a pair of partial colourings X ,Y defined

on V
col

and a partition of vertices V = V1 ⊔V2. For any edge e in
the original E such that e ∩V1 , ∅ and e ∩V2 , ∅, it is removed

because either it is satisfied by bothX andY , or k2 vertices in e have
been coloured. In the latter case, all vertices in e are either coloured
or in V1, namely e ⊂ V1 ∪Vcol. Hence all edges intersecting V1 and
V2 \Vcol are satisfied by both X and Y . This fact will be useful later.

For u ∈ V , let Γver(u) denote the neighbouring vertices of u
(including u), namely Γver(u) = {w | ∃e ∈ E, {u,w} ⊆ e}, and let

Algorithm 1 The coupling process

1: Input: A hypergraphH (V , E) with pinnings P and k1 ≤ |e | ≤ k
for every e ∈ E, two partial colourings X0 and Y0.

2: Output: V
col
⊆ V , a partition V1 ⊔ V2 = V , and two partial

colourings X ,Y defined on V
col

.
3: V1 ← {v}, V2 ← V \V1, Vcol ← {v};
4: X ← X0, Y ← Y0;
5: while ∃e ∈ E s.t. e ∩V1 , ∅ and e ∩V2 , ∅ do
6: Let e be the first such hyperedge;

7: Let u be the first vertex in e ∩V2;
8: Sample a pair of colours (cx , cy ) according to the maximal

coupling of the marginal distribution at u conditioned on X
and Y respectively;

9: ExtendX andY by colouringu with cx and cy , respectively;
10: V

col
← V

col
∪ {u};

11: if cx , cy then
12: V1 ← V1 ∪ {u}, V2 ← V2 \ {u};
13: end if
14: for e ∈ Γ(u) ∩ E s.t. e is satisfied by both X and Y do
15: E ← E \ {e};
16: end for
17: for e ∈ Γ(u)∩E s.t. e∩V1 , ∅, e∩V2 , ∅, and |e ∩V

col
| =

k2 do
18: V1 ← V1 ∪ (e \Vcol), V2 ← V \V1;
19: E ← E \ {e};
20: end for
21: end while

Γver(U ) =
⋃
u ∈U Γver(u) for a subset U ⊆ V . The following lemma

summarizes some properties of this random process.

Lemma 8. The following properties of Algorithm 1 hold:
(1) All coloured vertices are either in V1 or incident to V1, namely

V
col
⊆ Γver(V1);

(2) The distributions of X and Y are pre-Gibbs with respect to µC1
and µC2 respectively.

Proof. For (1), notice that whenever we add a vertex u intoV
col

,

it must hold that u ∈ e for some e ∩V1 , ∅ at the time. The claim

follows from a simple induction.

For (2), we only prove the lemma forX . The proof forY is similar.

The partial colouring X is generated in the following way: at each

step either the process ends, or the next uncoloured vertex u is

chosen and extend X to u with the correct (conditional) marginal

probability and repeat. Our decisions (whether or not to halt, and

what is the next u) depend on Y in addition to the partial colouring

X so far.

An intermediate state S of Algorithm 1 consists of partial colour-

ings X , Y ,V
col

, andV1.
3
Our claim is that, conditioned on any valid

S, the distribution of the final output (on the X side) of Algorithm

1 is pre-Gibbs with respect to µCX . The lemma clearly follows from

the claim by setting S to the initial state of Algorithm 1.

We induct on the maximum possible future steps of S. The base

case is that S will halt immediately. Thus the output is simply X

3
We note that actuallyVcol andV1 are completely determined by X and Y , but we do

not need this fact here. The reason for Vcol is obvious, and V1 can be deduced from

X , Y by simulating the whole process from start.
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and completing it yields the uniform distribution on CX . That is,

the output is pre-Gibbs.

For the induction step, S will not halt but rather, extend the

colourings to some vertex u. Let τS(·) denote the measure of com-

pleting the output of Algorithm 1 conditioned on S. Let Xu←c
be

a partial colouring defined on V
col
∪ {u} by extending X to u with

colour c , and S′ be an internal state consistent withXu←c
, denoted

by S′ |= Xu←c
. Moreover, let q(S′) be the probability of transiting

from S to S′. Since the marginal probability at u only depends on

the previous partial colourings X ′, we have that∑
S′ |=Xu←c

q(S′) = µCX (X
u←c ), (4)

where µCX (X
u←c ) is in fact the marginal probability of the colour

c at u conditioned on X . By our induction hypothesis, conditioned

on S′, the final output is pre-Gibbs with respect to CXu←c . That is,

τS′(·) = µCXu←c (·). (5)

For σ ∈ CX , suppose X
u←c

is the partial colouring of σ restricted

to V
col
∪ {u}. Then we have that

τS(σ ) =
∑

S′ |=Xu←c

q(S)τS′(σ )

=
∑

S′ |=Xu←c

q(S′)µCXu←c (σ )

= µCXu←c (σ )
∑

S′ |=Xu←c

q(S′)

= µCXu←c (σ )µCX (X
u←c )

= µCX (σ ),

where in the second line we use (5), and in the fourth line we use

(4). The claim follows. □

Therefore, the output of Algorithm 1 is a coupling of two pre-

Gibbs measures such that they are defined on the same set of ver-

tices V
col

. We use µcp(·, ·) to denote this joint distribution.

It is possible to show that the final size of |V1 | is O(log |V |) with
high probability. This fact will not be directly used, and is indeed

not strong enough for the algorithm and its analysis in the next

section. We will omit its proof. What we will show eventually

is that, conditioned on a randomly chosen colouring from C1 or

C2, the probability that the coupling process terminates decays

exponentially with the depth. There are two levels of randomness

here, and they will be separated, since the linear program later will

only be able to certify the second kind randomness.

Later, in Section 6, when we do sampling, we will be facing a

similar procedure, Algorithm 2, andwewill show that the connected

components produced by Algorithm 2 are O(log |V |) with high

probability (Lemma 21). This is in the same vein as |V1 | being size
O(log |V |) with high probability in Algorithm 1.

4 COMPUTING THE MARGINALS
In the previous section, we introduced a random process to generate

a joint distribution of partial colourings µcp(·, ·), whose marginal

distributions are pre-Gibbs. Recall that we fixed X (v) = c1 and

Y (v) = c2. Let qi denote the marginal probability in µC of v being

coloured by ci , for i = 1, 2. That is, qi =
|Ci |
|C |

for i = 1, 2. The

coupling naturally induces an (imaginary) sampler to uniformly

sample from C1 ∪ C2 as follows:

Step 1: Sample (X ,Y ) using Algorithm 1;

Step 2: Let v ← c1 with probability
q1

q1+q2
and v ← c2 otherwise;

Step 3: If v is coloured by c1, uniformly output a colouring in CX ,

otherwise uniformly output a colouring in CY .

We denote this sampler by S. The output of S is uniform over

C1∪C2 is because by Lemma 8, the output distribution of Algorithm

1, projected to either side, is pre-Gibbs. Then we choose the final

colouring proportional to the correct ratio.

One can represent the coupling process (Algorithm 1) as travers-

ing a (deterministic) coupling tree T constructed as follows: each

vertex in T represents a pair of partial colourings (x ,y)4 defined on
some V

col
that have appeared in the coupling. We write (x ,y) ∈ T

if (x ,y) is a pair of partial colourings represented by some vertex

in T . Although the intermediate state of Algorithm 1 consists of

partial colourings x ,y together with V
col

and V1, we can actually

deduceV
col

from x ,y, as well asV1 by simulating Algorithm 1 from

the start given x and y. Thus the pair (x ,y) determines either that

the coupling should halt or the next vertex u to extend to. In the

coupling tree T , (x ,y) either is a leaf or have q2 children, which
correspond to the q2 possible ways to extend (x ,y) by colouring u.
The root of the tree is the initial pair (x0,y0) defined on {v}.

In the following, we identify a collection of conditional marginal

probabilities that keeps the information of the coupling process.

First, consider a pair of partial colourings (x ,y) ∈ T which is a

leaf, and any two proper colourings σx ,σy such that σx |= x and

σy |= y. In the probability space induced by the sampler introduced

above, define

p
x
x,y := Pr(X ,Y )∼µcp [X = x ,Y = y | S outputs σx ] ;

p
y
x,y := Pr(X ,Y )∼µcp

[
X = x ,Y = y

�� S outputs σy ] .
These quantities are well defined and independent of the particular

choices of σx and σy . Essentially we only condition on the random

choice at step 2 of S. Once that choice is made, the output is uniform

over Cx or Cy .

Perhaps a clearer way of seeing this independence is to give

more explicit expressions to pxx,y and p
y
x,y . By Bayes’ rule,

p
x
x,y =

Pr(X ,Y )∼µcp [S outputs σx | X = x ,Y = y] µcp(x ,y)

Pr [S outputs σx ]

= q1 ·
|C1 ∪ C2 |

|Cx |
· µcp(x ,y); (6)

p
y
x,y =

Pr(X ,Y )∼µcp
[
S outputs σy

�� X = x ,Y = y
]
µcp(x ,y)

Pr
[
S outputs σy

]
= q2 ·

|C1 ∪ C2 |��Cy �� · µcp(x ,y). (7)

Combining two identities above we obtain

q1 · p
y
x,y ·

��Cy �� = q2 · p
x
x,y · |Cx | . (8)

A crucial observation is that, for every pair of partial colourings

(x ,y) that is a leaf of T with corresponding V
col
,V1,V2, the ratio

4
We use small letters x, y to denote particular partial colourings, and reserve capital

X , Y to denote random ones.
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|Cx |

|Cy |
can be computed in q |V1\Vcol

|
time. This is because when Al-

gorithm 1 terminates, all edges intersecting V1 and V2 \ Vcol are
satisfied by both x andy. The numbers of ways colouring blank ver-

tices inV2 cancel out, and we only need to enumerate all colourings

for blank vertices inside V1. Let rx,y =
|Cx |

|Cy |
.

Next, consider an internal (x ,y) in the coupling tree T . We in-

terpret p
x
x,y and p

y
x,y as the probability that the coupling process

has ever arrived at an internal pair of partial colourings (x ,y) con-
ditioned on the output of S is σx and σy , respectively. Note that
the definition is consistent with our previous definition when (x ,y)
is a leaf of T . Recall that (x0,y0) is the root of T , namely x0 or y0
only colours v with c1 or c2, respectively. For (x0,y0), we have that

px0x0,y0 = p
y0
x0,y0 = 1. (9)

Moreover, for an internal (x ,y)whose children are defined onV ′
col
=

V
col
∪ {u}, it holds that

for every c ∈ [q], pxx,y =
∑

c ′∈[q]

p
xu←c
xu←c ,yu←c′

; (10)

for every c ∈ [q], p
y
x,y =

∑
c ′∈[q]

p
yu←c

xu←c′,yu←c
. (11)

where we use xu←c
to denote the partial colouring that extends x

by assigning colour c to the vertex u.
In fact, when the coupling process is at some internal node of

the coupling tree, say (x ,y), defined on V
col

, and the next step is to

sample the colour on a vertex u, one can recover the distribution of

the colour on u in the next step from the values{
p
xu←c
xu←c ,yu←c′

, p
yu←c

xu←c′,yu←c
: c, c ′ ∈ [q]

}
by solving linear constraints using Bayes’ rule. Therefore, the collec-

tion

{
p
x
x,y , p

y
x,y : (x ,y) ∈ T

}
encodes all information of the cou-

pling process.

4.1 The linear program
The values p

x
x,y and p

y
x,y are unknown and we are going to impose

a few necessary linear constraints on them. The basic constraints

are derived from (8), (9), (10), and (11). To this end, for every node

(x ,y) in T , we introduce two variables px
x,y

and py
x,y

, aiming to

mimic p
x
x,y and p

y
x,y .

The full coupling tree T is too big, and we will truncate it up to

some depth L > 0. The quantity Lwill be set later. We will perform a

binary search to estimate the ratio
q1

q2

using the truncated coupling

tree. Thus, we introduce two variables r and r as our guesses for

upper and lower bounds of
q1

q2

. Let TL be the coupling tree truncated

at depth L, and denote by L(T ) the leaves of a tree T . Since the

coupling procedure colours one vertex at a time, for any node

(x ,y) ∈ TL , we have that |Vcol | ≤ L where V
col

is determined by

(x ,y). Formally, we have three types of constraints.

Constraints 1: For every leaf (x ,y) ∈ L(TL) with corresponding

|V
col
| < L, we have the constraints:

r · py
x,y
≤ px

x,y
· rx,y ;

px
x,y
· rx,y ≤ r · py

x,y
;

0 ≤ px
x,y
,py

x,y
≤ 1.

Constraints 1 are relaxed versions of identity (8). These constraints

are the most critical ones. However, in order to compute rx,y , one
needs exp(L) amount of time. This forces us to go only logarithmic

depth in the coupling tree, but we will show that this is enough.

Constraints 2: For the root (x0,y0) ∈ T , we have

px0
x0,y0

= py0
x0,y0

= 1.

Moreover, for every non-leaf (x ,y) ∈ T with corresponding |V
col
| <

L, let u be the next vertex to couple. We have the following con-

straints:

for every c ∈ [q], px
x,y
=

∑
c ′∈[q]

px
u←c

xu←c ,yu←c′
;

for every c ∈ [q], py
x,y
=

∑
c ′∈[q]

p
yu←c

xu←c′,yu←c
;

0 ≤ px
x,y
,py

x,y
≤ 1.

These constraints faithfully realize the properties (9), (10), and (11).

Constraints 3: For every c, c ′ ∈ [q] that c , c ′, we add constraints:

px
u←c

xu←c ,yu←c′
≤

5

t∗
· px

x,y
;

p
yu←c

′

xu←c ,yu←c′
≤

5

t∗
· py

x,y
.

We will eventually set t∗ = 5

(
e2k3∆3

2

) 1

1−β
in Lemma 17, where the

parameter 0 < β < 1 will become clear in Definition 14.

These constraints reflects the fact that the coupling at individual

vertices are very likely to succeed, due to by Lemma 7. Assume the

conditions of Lemma 7 are met with t = t∗. We claim that the true

values {pxx,y } satisfy

p
xu←c
xu←c ,yu←c

p
x
x,y

≥ 1 −
5

t∗
.

Then Constraints 3 follows from Constraints 2. We use (6) to

show the claim. By Lemma 7,

|Cx |

|Cxu←c |
=

1

Prσ∼µCx [σ (u) = c]
≥

qt∗

t∗ + 4
.

Again by Lemma 7, the coupling at u with any colour c succeeds

with probability at least
1

q

(
1 − 1

t ∗
)
. Thus the ratio

µcp(xu←c ,yu←c )
µcp(x,y)

,

which can be viewed as the probability of conditioned on reaching

(x ,y), coupling u successfully with colour c , is at least 1

q

(
1 − 1

t ∗
)
.
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Combine these facts with (6),

p
xu←c
xu←c ,yu←c

p
x
x,y

=
|Cx |

|Cxu←c |
·
µcp(x

u←c ,yu←c )

µcp(x ,y)

≥
qt∗

t∗ + 4
·
1

q

(
1 −

1

t∗

)
= 1 −

5

t∗ + 4
≥ 1 −

5

t∗
.

Similar inequalities hold for {p
y
x,y } due to (7).

4.2 Analysis of the LP
In this subsection, we show that the LP can be used to obtain an

efficient and accurate estimator of marginals.

Theorem 9. Let ∆ ≥ 2 and k > 0 be two integers. Let 0 < β < 1

be a constant. Let 0 < k2 < k1 ≤ k be integers. Let H = (V , E)
be a hypergraph with pinnings P, maximum degree ∆ such that
k1 ≤ |e | ≤ k for every e ∈ E. If

q > max

{
(ek∆)

1

k
1
−2 , β

−1
k
2
−1 ,C∆

3

β (k
2
−1) ,C∆

4−β
(1−β )(k

1
−k

2
−1)

}
where

C > max


(
eβ+3k3

2ββ
·

(
k

k2

)) 1

β (k
2
−1)

,

(
5e

(
e2k3

2

) 1

1−β
) 1

k
1
−k

2
−1

 ,
then there is a deterministic algorithm that, for every v ∈ V , c ∈ [q]
and ε > 0, it computes a number p̂ satisfying

e−ε · p̂ ≤ Prσ∼µC [σ (v) = c] ≤ eε · p̂.

in time poly( 1ε ).

Before diving into the proof details, let us first imagine that we

set up the LP for the whole coupling tree. To do this would require

exponential amount of time, but we show that this indeed can be

used to recover accurate information. Due to Constraints 2, a
simple induction shows that for every L ≤ |V | and σ ∈ C1,∑

(x,y)∈L(TL ): σ |=x

p̂xx,y = 1.

In particular, when L = |V |, this means that∑
(x,y)∈L(T ): σ |=x

p̂xx,y = 1.

Similar equalities hold on the Y side. Using this, we rewrite the

ratio
|C1 |

|C2 |
as follows:

|C1 |

|C2 |
=

∑
σ ∈C1 1∑
σ ∈C2 1

=

∑
σ ∈C1

∑
(x,y)∈L(T):σ |=x p̂

x
x,y∑

σ ∈C2
∑
(x,y)∈L(T):σ |=y p̂

y
x,y

=

∑
(x,y)∈L(T)

∑
σ |=x p̂

x
x,y∑

(x,y)∈L(T)
∑
σ |=y p̂

y
x,y

=

∑
(x,y)∈L(T) p̂

x
x,y |Cx |∑

(x,y)∈L(T) p̂
y
x,y

��Cy �� .
Recall rx,y =

|Cx |
|Cy |

. ByConstraints 1, we know that for any (x ,y) ∈

L(T ),

r ≤
p̂xx,y |Cx |

p̂
y
x,y

��Cy �� ≤ r .

It implies that

r ≤
|C1 |

|C2 |
≤ r .

Unfortunately, as the size and the computational cost of setting

up the LP is exponential in L, we have to truncate it early. The rest

of our task is to show that the error caused by the truncation is

small. One may notice that in the analysis above we do not use

Constraints 3. Indeed, these constraints are used to bound the

truncation error.

Intuitively, the truncation error comes from the proper colour-

ings so that the coupling does not halt at depth L (since we cannot

impose Constraints 1 for these nodes). A naive approach would

then try to show that conditioned on any proper colouring as the

final output, the coupling will terminate quickly. This is unfortu-

nately not true and there exist “bad” colourings so that the coupling

does not terminate at level L with high probability. For example,

given the ordering of vertices and edges, a proper colouring σ ∈ C1
may render all vertices encountered in Algorithm 1 with the same

colour. Hence conditioned on this σ on the X side, Algorithm 1 will

not stop until all edges are enumerated.

We will show, nonetheless, that the fraction of “bad” colourings

is small. Let us formally define bad colourings first. We need to use

the notion of {2, 3}-trees. This notion dates back to Alon’s parallel

local lemma algorithm [Alo91].

Definition 10 ({2, 3}-tree). LetG = (V ,E) be a graph. A set of ver-

ticesT ⊆ V is a {2, 3}-tree if (1) for any u,v ∈ T , distG (u,v) ≥ 2; (2)

if one adds an edge between everyu,v ∈ T such that distG (u,v) = 2

or 3, then T is connected.

We will need to count the number of {2, 3}-trees later for union

bounds. The following lemma, due to Borgs et al. [BCKL13], counts

the number of connected induced subgraphs in a graph.

Lemma 11. Let G = (V ,E) be a graph with maximum degree d
and v ∈ V be a vertex. The number of connected induced subgraphs

of size ℓ containing v is at most
(
ed
2

)ℓ−1
.

Corollary 12. Let G = (V ,E) be a graph with maximum degree
d and v ∈ V be a vertex. Then the number of {2, 3}-trees in G of size

ℓ containing v is at most
(
ed3

2

)ℓ−1
.

Proof. Let G ′ = (V ,E ′) be the graph with vertex set V and

(u,v) ∈ E ′ if distG (u,v) = 2, 3. The degree of G ′ is at most d3 and
any {2, 3}-tree in G is a connected set of vertices in G ′. Therefore,
the number of {2, 3}-trees inG containingv of size ℓ can be bounded

by the number of induced subgraphs in G ′ containing v of size ℓ.

Lemma 11 then concludes the proof. □

Recall that Lin(H ) is the line graph of H , that is, vertices in

Lin(H ) are hyperedges in H and two hyperedges are adjacent if

they share some vertex in H . Let L
2(H ) be a graph whose vertices

are hyperedges in H and two hyperedges are adjacent in L
2(H ) if

their distance is at most 2 in Lin(H ). Any connected subgraph in

L
2(H ) contains a large {2, 3}-tree in Lin(H ).

Lemma 13. Let B be a set of hyperedges which induces a connected
subgraph in L

2(H ), and e∗ ∈ B be an arbitrary hyperedge. There
exists a {2, 3}-tree T ⊆ B such that e∗ ∈ T in Lin(H ) and |T | ≥ |B |k∆ .
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Proof. We construct T greedily starting from T0 := {e
∗}. Given

Ti , let B ← B \Γ(Ti ), and then letTi+1 beTi plus the first hyperedge
in B which has distance ≤ 3 from Ti . If no such hyperedge exists,

the process stops.

We claim that when the process stops, all hyperedges in B are

removed. If there is a nonempty subset B′ ⊂ B remaining, choose an

arbitrary e ∈ B′. Since B is connected in L
2(H ), there is a shortest

path P ⊂ B from e to some e ′ ∈ T in L
2(H ). Assume that P is

e → · · · → e1 → e2 → e ′ (where e1 is possible to be e). The
minimality of |P | implies that e1, e2 < T . If dist

Lin(H )(T , e2) = 1,

then dist
Lin(H )(T , e1) ≤ 1 + dist

Lin(H )(e1, e2) ≤ 3 and it contradicts

to the construction of T as e1 would be added to T . Otherwise
dist

Lin(H )(T , e2) = 2, and again it contradicts to the construction of

T as e2 would be added to T .
For the size ofT , notice that in every step of the process, at most

k∆ hyperedges are removed. Hence |T | ≥ |B |k∆ . □

We now define bad colourings. Let e0 be the first edge in Γ(v).
Recall that in the coupling process we would attempt to colour at

most k2 vertices in an edge, where 0 < k2 < k1. We will have an-

other parameter 0 < β < 1, which denotes the fraction of (partially)

monochromatic hyperedges in a bad colouring. All parameters will

be set in Section 7.

Definition 14 (bad colourings). Let L > 0 be an integer and β > 0

be a constant. A colouringσ ∈ C1 is ℓ-bad if there exists a {2, 3}-tree
T in Lin(H ) and V

col
such that

(1) |T | = ℓ and e0 ∈ T ;
(2) for every e ∈ T , |e ∩V

col
| = k2;

(3) the partial colouring of σ restricted toV
col

makes at least βℓ
hyperedges in T (partially) monochromatic.

We say σ ∈ C1 is ℓ-good if it is not ℓ-bad.

Note that since T is a {2, 3}-tree in Lin(H ) in Definition 14, all

hyperedges in T are disjoint.

We show that the fraction of bad proper colourings among all

proper colourings in C1 is small. This allows us to throw away bad

colourings in the estimates later.

Lemma 15. Let ∆ ≥ 2 and 0 < k2 < k1 ≤ k all be integers.
Let 0 < β < 1 be a constant. Let H (V , E) be a hypergraph with
pinnings P, where the maximum degree is ∆ and k1 ≤ |e | ≤ k for

every e ∈ E. If q1−k2 < β , q > (ek∆)
1

k
1
−2 , and q > C∆

3

β (k
2
−1) where

Cβ (k2−1) ≥ eβ+3k3

2β β
·
( k
k2

)
, then we have

|{σ ∈ C1 : σ is ℓ-bad}|
|C1 |

≤ e−ℓ .

Proof. Fix a {2, 3}-tree T = {e1, e2, · · · , eℓ} in Lin(H ) of size ℓ
andV

col
such that for every e ∈ T , |e ∩V

col
| = k2. We say σ is ℓ-bad

with respect toT andV
col

if σ ,T , andV
col

satisfy the requirments in

Definition 14. Denote by ZV
col

or simply Z the number of (partially)

monochromatic hyperedges by first drawing from µC1 and then

revealing the colours of vertices inV
col

. We use Theorem 4 to bound

the probability that Z ≥ βℓ.
Indeed, µC1 can be viewed as the uniform distribution over

proper colourings of an instance where v is pinned to colour c1. In
this instance, we have thatk1−1 ≤ |e | ≤ k for every e ∈ E. Hence, in

the product distribution Pr [e is monochromatic] ≤ q2−k1 ≤ 1

ek∆

for every e ∈ E by assumption. We set x(e) = 1

k∆ in Theorem 4

and verify (1):

x(e)
∏

e ′∈Γ(e)

(
1 − x(e ′)

)
≥

1

k∆

(
1 −

1

k∆

)k∆−1
≥

1

ek∆
≥ Pr [e is monochromatic] .

In the product distribution (where all vertices are independent),

for e ∈ T , all vertices in e∩V
col

are monochromatic with probability

p∗ := q1−k2 < β . Since T is a {2, 3}-tree in Lin(H ), all edges are
disjoint and these events are independent in the product distribu-

tion. Hence, by a multiplicative Chernoff bound with mean p∗ℓ and

γ =
β
p∗ − 1 > 0,

Pr [Z ≥ βℓ] = Pr
[
Z ≥ (1 + γ )p∗ℓ

]
≤

(
eγ

(1 + γ )1+γ

)p∗ℓ
≤

(
ep∗

β

)βℓ
.

For each edge e ∈ T , there are at most k(∆ − 1) + 1 ≤ k∆ − 1 edges
that intersect with e (including itself). The random variable Z thus

depends on at most (k∆ − 1)ℓ hyperedges in µC1 . By Theorem 4

with x(e) = 1

k∆ ,

µC1 (Z ≥ βℓ) ≤ Pr [Z ≥ βℓ] ·

(
1 −

1

k∆

)−(k∆−1)ℓ
≤

(
ep∗

β

)βℓ
· eℓ =

(
e1+1/βp∗

β

)βℓ
.

To finish the argument, we still need to account for all {2, 3}-

trees and V
col

by an union bound. Since the maximum degree in

Lin(H ) is k∆, the total number of {2, 3}-trees containing e0 of size ℓ,

by Corollary 12, is at most

(
e(k∆)3

2

)ℓ
. For a fixed T , since all edges

in T are disjoint, the number of possible V
col

is at most

( k
k2

)ℓ
.

Putting everything together, we have that

Pr
σ∼µC

1

[σ is ℓ-bad] ≤

(
e1+1/βp∗

β

)βℓ (
e(k∆)3

2

)ℓ (
k

k2

)ℓ
=

(
eβ+1

ββ
·
ek3

2

·

(
k

k2

)
· qβ−βk2∆3

)ℓ
.

By assumption,

qβk2−β ≥ Cβ (k2−1)∆3 ≥
eβ+2

ββ
·
ek3

2

·

(
k

k2

)
· ∆3.

Combining these two inequalities finishes the proof. □

Let (x ,y) ∈ T be a pair of partial colourings defined on V
col

. We

are now going to prove some structural properties of (x ,y). Say an

edge e ∈ E such that e ∩V
col
, ∅ is blocked by (x ,y) if one of the

following holds

(1) x(u) , y(u) for some u ∈ e .
(2) |e ∩V

col
| = k2 and e is not satisfied by both x and y.

Notice that all edges in Γ(v) are always blocked, and in particular,

e0 is always blocked.
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Let us denote the set of edges blocked by (x ,y) as Bx,y . Then
Bx,y always contains a large {2, 3}-tree.

Lemma 16. Let (x ,y) ∈ T be a pair of partial colourings in the
coupling tree defined onV

col
with correspondingV1. Assume |V

col
| = L.

There exists a {2, 3}-tree T ⊆ Bx,y in Lin(H ) of size at least L
k3∆2

containing e0.

Proof. We first claim that Bx,y is connected in L
2(H ) by in-

ducting on L. Once an edge is blocked during Algorithm 1, it will

remain blocked till the end. If u is the next vertex to be coloured in

Algorithm 1, then u must be adjacent to some vertex u ′ ∈ V1, and
u ′ is in some edge e blocked by the current (x ,y). Therefore any
newly blocked edge caused by colouring u has distance at most 2

to e .
Since e0 is always blocked, e0 ∈ Bx,y . By Lemma 13, there exists

a {2, 3}-tree T ⊆ Bx,y in Lin(H ) such that |T | ≥
|Bx,y |
k∆ . Next we

claim that

��Bx,y �� ≥ L
k2∆

. This is because that every vertex in V1

belongs to some blocked edge. Hence |V1 | ≤ k
��Bx,y ��. By item (1) of

Lemma 8, V
col
⊆ Γver(V1). It implies that L = |V

col
| ≤ |Γver(V1)| ≤

k∆ |V1 |. Combining these facts yields the lemma. □

Recall that TL is the tree obtained from T by truncating at depth

L, and L(TL) is its leaves. Because of Constraints 2, for every
proper colouring σ ∈ C1, it holds that∑

(x,y)∈L(TL ): σ |=x

pxx,y = 1. (12)

However, in Constraints 1, our linear program only contains con-

straints for those px
x,y

and py
x,y

whoseV
col

is of size strictly smaller

than L. The next lemma shows that, for a ℓ-good colouring σ , solv-
ing px

x,y
,py

x,y
provides a good approximation for the identity (12).

Lemma 17. Let 0 < β < 1 be a constant. Let H = (V , E) be
a hypergraph with pinnings P and maximum degree ∆ such that
|e | ≤ k for all e ∈ E. Let σ ∈ C1 be ℓ-good where ℓ is an integer. If{
p̂xx,y

}
is a collection of values satisfying all our linear constraints,

with t∗ = 5

(
e2k3∆3

2

) 1

1−β in Constraints 3 up to level L = k3∆2ℓ,
then it holds that ∑

(x,y)∈L(TL ): |Vcol
|<L

and σ |=x

p̂xx,y ≥ 1 − t∗e−ℓ . (13)

Proof. We construct a new coupling process similar to Algo-

rithm 1, and show the left-hand side of (13) is the probability of an

event defined by the new process. We modify S in the following two
ways: (1) condition on the final output being σ ; (2) use probabilities

induced by

{
p̂xx,y

}
instead of

{
p
x
x,y

}
. To be more specific, consider

each step where one needs to extend (x ,y) defined on V
col

to a

new vertex u. Call the new colourings (x ′,y′). Since the output σ
is fixed, we simply reveal x ′(u) = σ (u). In the original S, the colour
of y′(u) is drawn according to an optimal coupling of (x ′,y′) on u.

Here, we set y′(u) to colour c with probability

p̂x
u←σ (u)

xu←σ (u),yu←c

p̂xx,y
. This

is well-defined since

{
p̂xx,y

}
satisfies Constraints 2. If this process

reaches depth L, then it stops.

The output of the new coupling defines a distribution over pairs

of partial colourings (x ,y) such that σ |= x and we denote it by µ̂.
We claim that∑
(x,y)∈L(TL ): |Vcol

|=L
and σ |=x

p̂xx,y ≤
∑

{2, 3}-treeT :
|T |=ℓ, e0∈T

Pr
(X ,Y )∼µ̂

[
T ⊆ BX ,Y

]
. (14)

The left-hand side of (14) is the probability that our new coupling

reaches some (x ,y) with |V
col
| = L. Lemma 16 implies that the

set Bx,y of blocked edges contains a {2, 3}-tree T of size at least

L
k3∆2

= ℓ. Thus the probability of reaching vertices of depth L is

upper bounded by the right-hand side of (14).

Fix a {2, 3}-tree T of size ℓ. Since σ is ℓ-good, whatever the

choice of V
col

is, at least a (1 − β) fraction of hyperedges in T must

not be monochromatic on the X side. However, if T ⊆ BX ,Y , then

at least ⌊(1 − β) |T |⌋ hyperedges satisfy (1) σ (v) , Y (v) for some

v ∈ e ∩V
col

, or (2) |e ∩V
col
| = k2 and σ |V

col
= X |V

col
satisfies e but

Y does not satisfy e . It is clear that case (2) implies case (1), since if

one partial colouring satisfies e and another one does not, then they

must differ at some v ∈ e ∩V
col

. We use T ′ =
{
e1, e2, . . . , e |T ′ |

}
to

denote these hyperedges inT . For eachT ′, there must be at least one

vertex on which the (modified) coupling fails, which happens with

probability at most 5/t∗ due to Constraints 3. Since T is a {2, 3}-

tree in Lin(H ), all of these failed couplings are for distinct vertices

and thus happen independently. Hence, in this new coupling, the

probability that every edge inT ′ is blocked due to at least one failed

vertex is at most

(
5

t ∗
) |T ′ |

≤

(
5

t ∗
) ⌊(1−β )ℓ⌋

.

We still need to apply a union bound. The number of {2, 3}-trees

of size ℓ in Lin(H ) and containing e0 is, by Corollary 12, at most(
ek3∆3

2

)ℓ
. Therefore the right-hand side of (14) is at most

∑
{2, 3}-treeT :
|T |=ℓ, e0∈T

Pr
(X ,Y )∼µ̂

[
T ⊆ BX ,Y

]
≤

(
5

t∗

) ⌊(1−β )ℓ⌋
·

(
ek3∆3

2

)ℓ
≤ t∗e−ℓ , (15)

since we have chosen t∗ = 5

(
e2k3∆3

2

) 1

1−β
in Constraints 3. The

lemma follows by combining (12), (14), and (15). □

Note that in Lemma 17 we do not explicitly require a lower

bound of q nor a lower bound on the size of the edges. However,

these requirements are implicit since we have set t∗ to be large in

Constraints 3.
Lemma 15 and Lemma 17 also hold for any σ ∈ C2. Now we can

prove that any solution to the LP provides accurate estimates.

Lemma 18. Assume the settings of Lemma 15 and Lemma 17. If the

linear program up to level L has a solution
{
p̂xx,y , p̂

y
x,y

}
with guessed

bounds
{̂
r , r̂

}
, then it holds

e−γ r̂ ≤
|C1 |

|C2 |
≤ eγ r̂ ,

where γ = 2(1 + t∗)e
− L
k3∆2 .
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Proof. Let ℓ = L
k3∆2

. Let

Z1 :=
∑
σ ∈C1

∑
(x,y)∈L(T): |V

col
|<L

and σ |=x

p̂xx,y .

Exchange the order of summation:

Z1 =
∑

(x,y)∈L(T): |V
col
|<L

∑
σ ∈C1: σ |=x

p̂xx,y

=
∑

(x,y)∈L(T): |V
col
|<L

p̂xx,y · |Cx | .

A similar quantity Z2 can be defined and bounded by replacing pxx,y
with p

y
x,y . Constraints 1 impose that for any (x ,y) ∈ L(T ) such

that |V
col
| < L,

r̂ ≤
p̂xx,y · |Cx |

p̂
y
x,y ·

��Cy �� ≤ r̂ .

Hence,

r̂ ≤
Z1
Z2
≤ r̂ . (16)

We will relate |C1 | with Z1. It is easy to see, by (12), that

|C1 | =
∑
σ ∈C1

1 =
∑
σ ∈C1

∑
(x,y)∈L(TL ): σ |=x

p̂xx,y ≥ Z1. (17)

The lower bound is more complicated:

|C1 | =
∑
σ ∈C1

1 ≤

(
1 − e−ℓ

)−1 ∑
σ ∈C1:

σ is ℓ-good

1

≤

(
1 − e−ℓ

)−1 (
1 − t∗e−ℓ

)−1 ∑
σ ∈C1:

σ is ℓ-good

∑
(x,y)∈L(T): |V

col
|<L

and σ |=x

p̂xx,y

≤ eγ
∑
σ ∈C1

∑
(x,y)∈L(T): |V

col
|<L

and σ |=x

p̂xx,y = eγZ1, (18)

where in the first line we use Lemma 15 and in the second line we

use Lemma 17. Similar bounds hold with |C2 | and Z2. Combining

(16), (17), (18), and their counterparts for |C2 | and Z2, we have that

e−γ r̂ ≤
|C1 |

|C2 |
≤ eγ r̂ . □

We then set up a binary search, to find r and r that are close

enough to the true ratio.

We are now ready to prove the main theorem of this section.

Proof of Theorem 9. Take L = k3∆2

⌈
log

(
2(1+t ∗)

ε

)⌉
so that

γ = 2(1 + t∗)e
− L
k3∆2 ≤ ε . We claim the true values of

{
pxx,y ,p

y
x,y

}
always satisfy our LP. This is trivial for Constraints 1 and 2. For

Constraints 3, recall that t∗ = 5

(
e2k3∆3

2

) 1

1−β
> k and we only

need to verify the conditions of Lemma 7 with t = t∗. At any point

of Algorithm 1, the size of an edge is at least k1 − k2. Hence we set
k ′ = k1 − k2 in Lemma 7. By our assumption,

q > C∆
4−β

(1−β )(k
1
−k

2
−1) ≥

(
5e

(
e2k3

2

) 1

1−β
) 1

k′−1

· ∆
4−β

(1−β )(k′−1)

=
(
et∗∆

) 1

k′−1 .

Fix the colour c . It follows from Lemma 18 that for every c ′ ∈ [q],
we can apply the binary search algorithm to obtain a value pc ′ ,

which is an estimate of

Prσ∼µC [σ (v)=c
′]

Prσ∼µC [σ (v)=c]
satisfying

e−ε · qc ′ ≤
Prσ∼µC [σ (v) = c

′]

Prσ∼µC [σ (v) = c]
≤ eε · qc ′ .

We then use p̂ :=
(∑

c ′∈[q] pc ′
)−1

to estimate Prσ∼µC [σ (v) = c].
For the running time, we treat ∆, k , and q as constants. The

size of the linear program in the WHILE loop is exp(O(L)). This is
because the coupling tree T is q2-ary, and therefore it has at most

exp(O(L)) vertices up to depth L, and we have a pair of variables

px
x,y

and py
x,y

for each vertex. The number of variables and the

number of constraints is at most exp(O(L)). Note that for each set of
constraints inConstraints 1, we need to enumerate all the possible

colourings in V1 to compute rx,y for every leaf (x ,y). This costs at
most exp(O(L)) time. Hence it takes exp(O(L)) time to construct

an LP of size exp(O(L)), which requires again exp(O(L)) time to

solve. Note that with our choice of L, exp(O(L)) = poly

(
1

ε

)
. For

the WHILE loop, we use binary search to find r and r . Thus the

number of loops of the binary search is at most log
2

2

eε = poly

(
1

ε

)
.

Therefore, the total running time of our estimator is poly

(
1

ε

)
. □

5 APPROXIMATE COUNTING
Now we give our FPTAS for the number of proper q-colourings of a
k-uniform hypergraphH with maximum degree ∆. The next lemma

guarantees us a “good” proper colouring σ so that we can use the

algorithm in Theorem 9 to compute the marginal probability of σ .

Lemma 19. Let kC
1
be an integer such that 0 < kC

1
< k − 1. Let

q ≥
(
4(k − kC

1
)∆

) 1

k−kC
1
−1 . Let v1, . . . ,vn be an arbitrary ordering of

the vertices of a k-uniform hypergraph H = (V , E). There exists a
proper colouring σ such that for every hyperedge e ∈ E, the partial
colouring σ restricted to the first k−kC

1
vertices is not monochromatic.

Moreover, σ can be found in deterministic polynomial time.

Proof. Let k ′ = k − kC
1
. Consider a new hypergraph H ′ =

(V , E ′) on the same vertex set V , but for every e ∈ E, we replace it
with its first k ′ vertices. We set x(e) = 1

k ′∆ in Theorem 3 and verify

(1) for every e ∈ E ′,

x(e)
∏

e ′∈Γ(e)

(
1 − x(e ′)

)
≥

1

k ′∆

(
1 −

1

k ′∆

)k ′(∆−1)
≥

1

ek ′∆
≥ q1−k

′

≥ Pr [e is monochromatic] .

935



Counting Hypergraph Colourings in the Local Lemma Regime STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Hence, Theorem 3 implies that there exists a proper colouring σ in

H ′, which satisfies the requirement of the lemma.

In order to find σ , we have left a bit slack in our bound on q.
Thus the deterministic algorithm from [MT10] applies. □

Theorem 20. Assume the conditions of Theorem 9 (on q, ∆, k ,
k1, k2, and β) with k1 = kC

1
hold, together with the conditions of

Lemma 19. There is an FPTAS for the number of proper q-colourings
of a k-uniform hypergraph H = (V , E) with maximum degree ∆.

Proof. Let n = |V |. Choose an arbitrary ordering of the vertices

v1, . . . ,vn ofV . Lemma 19 implies that we can find a proper colour-

ing σ so that any hyperedge is properly coloured by the first k −kC
1

of its vertices. Let Z = |C| be the number of proper colourings of

H . For every ε > 0, we will deterministically compute a number Ẑ

in time polynomial in n and 1/ε such that e−ε Ẑ ≤ Z ≤ eε Ẑ .
As before, let µC be uniform over C, the set of all proper colour-

ings of H . We will actually estimate µC(σ ) =
1

Z . To this end, we

create a sequence of hypergraphs {Hi } with pinnings {Pi } induc-

tively. Let H1 = H and P1 be empty. Given Hi = (Vi , Ei ) and Pi ,
we find the next vertex ui under the ordering that are contained in

at least one hyperedge of Hi . We pin the colour of ui to be σ (ui ).
This induces a pinning Pi+1 on all hyperedges in Ei . Then, Hi+1
is obtained by removing ui from Vi and removing all hyperedges

that are properly coloured under Pi+1 from Ei . We also truncate

the pinning Pi+1 accordingly. If for some n′ ≤ n, En′ is empty,

then this process terminates. Notice that the construction above

yields a subset of vertices u1, . . . ,un′ where n
′ ≤ n. Their ordering

is consistent with the given ordering.

We claim that for any i ∈ [n′], for any e ∈ Ei , it satisfies that
kC
1
≤ |e | ≤ k . This is because an edge e shrinks in size in the

process when vertices are pinned according to σ . However, Lemma

19 guarantees that the edge e will be removed in the process above

before k − kC
1
vertices are coloured. Therefore, together with our

assumptions, Theorem 9 applies with k1 = k
C
1
.

Let pi be the marginal probability of colour σ (ui ) at ui in Hi
with pinning Pi . Let pi =

1

q for all i ≥ n′. It is easy to see that

Z−1 = µC(σ ) =
∏n

i=1 pi . Thus we can obtain our desired estimate

Ẑ by approximating each pi within e±
ε
n . To this end, we appeal to

Theorem 9 with ε ′ = ε
n . □

6 SAMPLING
Finally we give the algorithm to sample proper colourings almost

uniformly. As usual, let H (V , E) be a k-uniform hypergraph with

maximum degree ∆, q be the number of colours, and C be the set of

proper colourings. Let n = |V |. Algorithm 2 samples a colouring in

C within total variation distance ε from µC . Similar to the coupling

process in Section 3, we assume that there is an arbitrary fixed

ordering of all vertices and hyperedges. There is a parameter 0 <

kS
1
< k − 1 in Algorithm 2, which will be set in Section 7.

We first assume that at Line 9, the oracle call to Theorem 9

is always within the correct range. This simplification allows us

to identify a threshold involving the parameter kS
1
to guarantee

small connected components, which will be put together with the

conditions of Theorem 9 later.

Algorithm 2 An almost uniform sampler for proper colourings

1: Input:Ak-uniforom hypergraphH (V , E)withmaximum degree
∆ and 0 < ε < 1

2: Output: A colouring in C
3: Let X be the partial colouring that X (v) = − for every v ∈ V

initially;

4: while E is nonempty do
5: Choose the first uncoloured v ∈ V such that every e ∈ Γ(v)

contains > kS
1
uncoloured vertex;

6: if no such vertex v exists then
7: break
8: end if
9: Apply the algorithm in Theorem 9 to compute the marginal

distribution on v with precision
ε
2n , and extend X with the

colour on v according to the distribution;

10: Remove from E all hyperedges that are now satisfied.

11: end while
12: S ← uncoloured vertices in V ;

13: Let HS = (S, ES ) where ES := {e ∩ S : e ∈ E};
14: if HS contains a connected component with size at least

k2∆ log

(
2n∆
ε

)
then

15: return an arbitary x ∈ C
16: else
17: return a uniformly random proper colouring consistent

with X by enumerating all proper colourings of HS .

18: end if

Lemma 21. Assume the oracle call to Theorem 9 at Line 9 is within

the desired range. If q > (ek∆)
1

kS
1
−1 and q > C∆

3

k−kS
1
−1 where

C(k−k
S
1
)−1 > e7k3

2
, the condition in line 14 of Algorithm 2 holds

with probability at most ε/2.

Proof. The proof idea is to show the existence of a large com-

ponents in HS implies the existence of a large {2, 3}-tree in Lin(H )
whose vertices are edges that are not satisfied but k − kS

1
of their

vertices are already coloured. Then we show the probability of the

latter event is small.

Now assume that the sampler ends theWHILE loop with a partial

colouring X and HS . We say an edge e ∈ E is bad if X does not

satisfy e and |e ∩ S | = kS
1
, namely e is partially monochromatic

under X but k − kS
1
vertices have been coloured. Also, say a vertex

v ∈ S is blocked by an edge e ∈ E if v ∈ e and e is bad.
Fix an arbitrary hyperedge e0 that is bad, and e0 is contained

in a connected component of size at least L in HS . We denote the

set of vertices of this component byU and its induced hypergraph

HU . It is clear that every vertex in S is blocked by some bad edge.

Let F be the set of all bad edges incident toU . Then e0 ∈ F . Since
every vertex inU is blocked by some edge in F and every edge in

F contains at most k vertices, |F | ≥ L
k .

We claim that F is connected in L
2(H ). The reason is the fol-

lowing. For any two edges, say e1, e2 ∈ F , since HU is connected,

there exists a path in HU connecting e1 and e2. Every vertex along

this path must be blocked by some edge in F . Each adjacent pair

of vertices along this path corresponds to a pair of edges in F that

have distance at most 2 in Lin(H ).
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Lemma 13 implies that F contains a {2, 3}-tree of size at least

ℓ = L
k2∆

containing e0. Fix such a {2, 3}-treeT =
{
e1, . . . , e |T |

}
. Let

µ̂ be the distribution of our sampler at the end of the WHILE loop.

It holds that

Pr
X∼µ̂
[every ei ∈ T is bad] =

|T |∏
i=1

Pr
X∼µ̂

ei is bad
������ ∧j<i ej is bad

 .
Since ei ∩ ej = ∅ for every i , j and Theorem 9 guarantees our

estimated marginals are within eε/2n , for every 1 ≤ i ≤ |T |, we can
apply Lemma 7 with k ′ = kS

1
and t = k ,

Pr
X∼µ̂

ei is bad
������ ∧j<i ej is bad


≤ q · q−(k−k

S
1
) · (1 + 8/t)k/2 · e

ε (k−kS
1
)

2n

≤ e5 · q1−(k−k
S
1
).

Applying Lemma 7 requires that q > (ek∆)
1

kS
1
−1
. By Corollary 12,

the number of {2, 3}-trees of size ℓ in Lin(H ) containing e0 in F is

at most

(
ek3∆3

2

)ℓ
. Then by the union bound, the probability that

HS contains a component with size at least L is at most

n∆

(
ek3∆3

2

)ℓ (
e5 · q1−(k−k

S
1
)
)ℓ
, (19)

where the term |n∆| ≥ |E | accounts for the choice of e0. By assump-

tion,

q(k−k
S
1
)−1 > C(k−k

S
1
)−1∆3 >

e7k3∆3

2

.

As L = k2∆ log

(
2n∆
ε

)
and ℓ = L

k2∆
, e−ℓ ≤ ε

2n∆ . Hence, by (19) the

probability in Line 14 is at most

n∆

(
ek3∆3

2

)ℓ (
e5 · q1−(k−k

S
1
)
)ℓ
≤ n∆ · e−ℓ ≤

ε

2

. □

Now we are ready to give the sampling algorithm.

Theorem 22. Assume the conditions of Theorem 9 (on q, ∆, k ,
k1, k2, and β) with k1 = kS

1
hold, together with the conditions of

Lemma 21. For any k-uniform hypergraph H = (V , E) with maxi-
mum degree ∆ and ε > 0, Algorithm 2 outputs a proper colouring
whose distribution is within ε total variation distance to the uniform
distribution, and the running time is poly(n, 1ε ) where n = |V |.

Proof. First we check that the condition of Theorem 9 is met

with k1 = kS
1
, when it is called in Algorithm 2 at Line 9. This

is because whenever we colour a vertex, we make sure that all

hyperedges have at least kS
1
uncoloured vertices afterwards. Hence

we apply Theorem 9 with the pinnings P induced by the partial

colouring X so far.

We use µ̂(·) to denote the distribution of the final output of

Algorithm 2. Recall thet µC is the uniform distribution over C.

We shall bound the total variation distance distTV (µC , µ̂). To this
end, we introduce two intermediate distributions: Let µ1(·) be the
distribution obtained from the output of Algorithm 2 but ignoring

the condition on line 14 in Algorithm 2. Namely, it never checks

the size of connected components in HS and proceed to enumerate

all the proper colourings on S in any case. This is unrealistic since

doing so would require exponential time. We also define another

distribution µ2(·), which is the same as µ1(·) except at line 9, it uses
the true marginal instead of the estimate by calling Theorem 9.

Denote by B the event that the condition on line 14 holds. Let

p
fail

be the probability of event B. By Lemma 21, p
fail
≤ ε/2.

First note that µ2 = µC . Consider the distribution of the partial

colouring obtained immediately after the WHILE loop, i.e., the

partial colouring X . One can apply induction similar to the proof of

Lemma 8 to show that it follows a pre-Gibbs distribution. Therefore,

conditioned on X , sampling a uniform proper colouring of the

remaining vertices results in a uniform proper colouring.

We then bound distTV (µ1, µ2). For a particular partial colouring
x , we use Ex to denote the event that the sampler produces x at the

end of the WHILE loop, namely X = x . It holds that

distTV (µ1, µ2) =
1

2

∑
σ ∈C

���� Pr
Z∼µ1

[Z = σ ] − Pr
Z∼µ2

[Z = σ ]

����
=

1

2

∑
σ ∈C

����� ∑
x : σ |=x

(
Pr

Z∼µ1
[Z = σ | Ex ] · Pr

Z∼µ1
[Ex ]

− Pr
Z∼µ2

[Z = σ | Ex ] · Pr
Z∼µ2

[Ex ]

)�����,
where x runs over partial colourings.

The partial colouring x may never appear at the end of the

WHILE loop in Algorithm 2. In this case,

PrZ∼µ1 [Ex ] = PrZ∼µ2 [Ex ] = 0.

Otherwise x can be the partial colouring at the end of the WHILE

loop. Since the enumeration steps are identical and correct in both

µ1 and µ2 conditioned on Ex , we have that

PrZ∼µ1 [Z = σ | Ex ] = PrZ∼µ2 [Z = σ | Ex ] =
1σ |=x
|Cx |

,

where Cx is again the set of proper colourings consistent with the

partial colouring x .
It implies that

distTV (µ1, µ2) =
1

2

∑
σ ∈C

������ ∑
x : σ |=x

1

|Cx |

(
Pr

Z∼µ1
[Ex ] − Pr

Z∼µ2
[Ex ]

)������ .
(20)

Fix a partial colouring x defined on V
col
⊆ V that is a possible

output of the WHILE loop. We note that the order of visitingV
col

is

determined by the random choices of x . Say this order is v1, . . . ,vs .
Let

pi := PrZ ∈µC

Z (vi ) = x(vi )

������ ∧
1≤j<i

Z (vj ) = x(vj )

 .
Hence

Pr
Z∼µ1

[Ex ] − Pr
Z∼µ2

[Ex ] =
s∏
i=1

p̂i −
s∏
i=1

pi ,

where p̂i is our estimate of pi using Theorem 9 with error
ε
2n .

Theorem 9 implies that

e−
ε
2n p̂i ≤ pi ≤ e

ε
2n p̂i .
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Therefore, we have���� Pr
Z∼µ1

[Ex ] − Pr
Z∼µ2

[Ex ]

���� ≤ ε Pr
Z∼µ2

[Ex ] . (21)

Plugging (21) into (20), we obtain

distTV (µ1, µ2) ≤
1

2

∑
σ ∈C

������ ∑
x : σ |=x

ε

|Cx |
Pr

Z∼µ2
[Ex ]

������
=

ε

2

∑
σ ∈C

µ2(σ ) =
ε

2

.

Finally we bound distTV (µ̂, µ1). Since the behaviours of µ̂ and µ1

are identical if B does not happen, we have that PrZ∼µ̂
[
Z = σ

��� B]
=

PrZ∼µ1
[
Z = σ

��� B]
. It implies that

distTV (µ̂, µ1)

=
1

2

∑
σ ∈C

���� PrZ∼µ̂
[Z = σ ] − Pr

Z∼µ1
[Z = σ ]

����
=

1

2

∑
σ ∈C

���� PrZ∼µ̂
[Z = σ ∧ B] + Pr

Z∼µ̂

[
Z = σ

��� B]
· (1 − p

fail
)

− Pr
Z∼µ1

[Z = σ ∧ B] − Pr
Z∼µ1

[
Z = σ

��� B]
· (1 − p

fail
)

����
=

1

2

∑
σ ∈C

���� PrZ∼µ̂
[Z = σ ∧ B] − Pr

Z∼µ1
[Z = σ ∧ B]

����
≤

1

2

∑
σ ∈C

(
Pr
Z∼µ̂
[Z = σ ∧ B] + Pr

Z∼µ1
[Z = σ ∧ B]

)
≤ p

fail
.

Combining the above and Lemma 21, we obtain

distTV (µ̂, µC) ≤ distTV (µ̂, µ1) + distTV (µ1, µ2) + distTV (µ2, µC)

≤ p
fail
+
ε

2

≤ ε .

It remains to bound the running time of the sampler. The sampler

calls subroutines to estimate marginal at most n times and each

time the subroutine costs poly(n, 1ε ). Finally, upon the condition on

line 14 does not hold, the sampler enumerates proper colourings

on connected components of size O(log
( n
ε
)
). Therefore, the total

running time is poly(n, 1ε ). □

The distribution µ1 has a small multiplicative error comparing

to the uniform distribution µC . We remark that there are standard

algorithms to turn such a distribution into an exact sampler, dating

back to [Bac88, JVV86]. However, since we cannot completely avoid

event B, we can only bound the error in the final distribution µ̂ in

terms of total variation distance.

7 SETTLING ALL PARAMETERS
We have defined the following parameters throughout the paper:

• kC
1
: the number of vertices in a hyperedge that are not fixed

in approximate counting, Theorem 20;

• kS
1
: the number of vertices in a hyperedge that are not fixed

in sampling, Theorem 22;

• k2: the number of vertices in a hyperedge Algorithm 1 would

attempt to couple;

• β : the fraction of hyperedges that are monochromatic in

Definition 14.

We want our bound for approximate counting to have the form

C∆
A
1

k−B
1 . By Theorem 20, we want to make sure that, for any k > 0,

subject to 0 < k2 < kC
1
< k − 1, and 0 < β < 1,

A1

k − B1
≥

3

β(k2 − 1)
;

A1

k − B1
≥

4 − β

(1 − β)(kC
1
− k2 − 1)

;

A1

k − B1
≥

1

k − kC
1
− 1
.

We assume kC
1
and k2 are proportional to k . Minimizing A1 yields

the following solutions: A1 = 14,B1 = 14,kC
1
=

⌊
13k
14

⌋
,k2 =⌊

3k
7

⌋
, β = 1

2
. Plugging these values into Theorem 20, we want to

satisfy the following constraints:

k − kC
1
− 2 ≥ 0, C ≥

(
5e

(
e2k3

2

) 1

1−β
) 1

kC
1
−k

2
−1

,

qk2−1 >
1

β
, C ≥

(
eβ+3k3

2ββ
·

(
k

k2

)) 1

β (k
2
−1)

,

q > (ek∆)
1

kC
1
−2 , C ≥ 4(k − kC

1
)

1

k−kC
1
−1 .

One can verify that k ≥ 28 and C ≥ 315 suffice. This yields Theo-

rem 1.

Similarly, we want our bound for sampling to have the form

C∆
A
2

k−B
2 . By Theorem 22, we want to make sure that, for any k > 0,

subject to 0 < k2 < kS
1
< k − 1 and 0 < β < 1,

A2

k − B2
≥

3

β(k2 − 1)
;

A2

k − B2
≥

4 − β

(1 − β)(kS
1
− k2 − 1)

;

A2

k − B2
≥

3

k − kS
1
− 1
.

Similarly to the approximate counting case, minimizing A2 yields

the following solutions: A2 = 16,B2 =
16

3
,kS

1
=

⌊
13k
16

⌋
,k2 =⌊

3k
8

⌋
, β = 1

2
. Plugging these values into Theorem 22, we want to

satisfy the following constraints:

k − kS
1
− 2 ≥ 0, C ≥

(
5e

(
e2k3

2

) 1

1−β
) 1

kS
1
−k

2
−1

,

qk2−1 >
1

β
, C ≥

(
eβ+3k3

2ββ
·

(
k

k2

)) 1

β (k
2
−1)

,

q > (ek∆)
1

kS
1
−2 , C >

(
e7k3

2

) 1

(k−kS
1
)−1

.

938



STOC’18, June 25–29, 2018, Los Angeles, CA, USA Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang

One can verify that k ≥ 28 and C ≥ 798 suffice. This yields The-

orem 2. We note that these constraints also hold for k ≥ 6 and

C ≥ 3 × 1010.

8 CONCLUDING REMARKS
In this paper we give approximate counting and sampling algo-

rithms for hypergraph colourings, when the parameters are in the

local lemma regime. One important open question is how to get

an optimal constant in the exponent of ∆ in Theorem 1 and 2. This

constant comes from three places: to bound the number of “bad

colourings” (Lemma 15), to bound the errors (in the LP) incurred by

“good colourings” (Lemma 17), and finally to leave some slack for

either counting (Theorem 20) or sampling (Theorem 22). It seems

to us that the last slack is difficult to reduce, and a tighter result,

if possible, would come from improvements on the first two parts,

although our analysis has been pushed to the limit.

Another future direction is to generalize this approach for gen-

eral constraint satisfaction problems (CSP), or equivalently, the

general setup of the (variable version) local lemma. Our analysis

relies on some crucial property of hypergraph colourings, that all

constraints can be satisfied by partial assignments, ideally with

appropriate probabilities. To be more specific, suppose a constraint

C contains k variables. We require a property that, when a subset

of k ′ variables are randomly assigned, the probability that C is still

not satisfied is roughly c−k
′

for some constant c > 1. This property

does not necessarily hold in general, even for symmetric constraints.

One such example is when the variables take values from [q], and
the constraint is satisfied unless the sum of all its variables is 0

modulo q. We can take q to be large so that the strong local lemma

conditions hold, and yet this constraint cannot be satisfied by any

subset of variables. In particular, it is problematic to bound our

definition of “bad colourings” (Definition 14) when constraints can-

not be satisfied by partial assignments. New ideas are required to

handle more general settings.
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