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Abstract. For certain subclasses of NP,⊕P, or #P characterized by local constraints, it is known
that if there exist any problems within that subclass that are not polynomial time computable, then
all the problems in the subclass are NP-complete, ⊕P-complete, or #P-complete. Such dichotomy
results have been proved for characterizations such as constraint satisfaction problems and directed
and undirected graph homomorphism problems, often with additional restrictions. Here we give a
dichotomy result for the more expressive framework of Holant problems. For example, these addition-
ally allow for the expression of matching problems, which have had pivotal roles in the development
of complexity theory. As our main result we prove the dichotomy theorem that, for the class ⊕P,
every set of symmetric Holant signatures of any arities that is not polynomial time computable is
⊕P-complete. The result exploits some special properties of the class ⊕P and characterizes four
distinct tractable subclasses within ⊕P. It leaves open the corresponding questions for NP, #P, and
#kP for k �= 2.
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1. Introduction. The complexity class ⊕P is the class of languages L such that
there is a polynomial time nondeterministic Turing machine that on input x ∈ L has
an odd number of accepting computations, and on input x �∈ L has an even number
of accepting computations [37, 34]. It is known that ⊕P is at least as powerful as
NP, since NP is reducible to ⊕P via (one-sided) randomized reduction [44]. Also,
the polynomial hierarchy is reducible to ⊕P via two-sided randomized reduction [36].
There exist decision problems, such as graph isomorphism, that are not known to be
in P but are known to be in ⊕P [1]. The class ⊕P has also been related to other
complexity classes via relativization [2]. Further, while the class ⊕P lies between NP
and #P, it is known that there are several natural problems, such as 2SAT, that are
⊕P-complete, where the corresponding existence problem is in P [41], and a range of
others, including graph matchings and some coloring problems, for which the parity
problem is in P but exact counting is #P-complete [43].

As with the classes NP and #P it is an open question whether ⊕P strictly extends
P. For certain restrictions of these classes, however, dichotomy theorems are known.
For NP a dichotomy theorem would state that any problem in the restricted subclass
of NP either is in P or is NP-complete (or both, in the eventuality that NP equals
P). Ladner [32] proved that without any restrictions this situation does not hold: if
P �= NP, then there is an infinite hierarchy of intermediate problems that are not
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polynomial time interreducible.
The restrictions for which dichotomy theorems are known can be framed in

terms of local constraints, most importantly, constraint satisfaction problems (CSP)
[35, 20, 4, 5, 6, 23, 26, 21, 25] and graph homomorphism problems [24, 27, 7]. Ex-
plicit dichotomy results, where available, manifest a total understanding of the class
of computations in question, to within polynomial time reduction, and modulo the
collapse of the class.

In this paper we consider dichotomies in a framework for characterizing local
properties that is more general than those mentioned in the previous paragraph and
is called the Holant framework [13, 15]. A particular problem in this framework is
characterized by a set of constraint functions (also called signatures) as defined in
the theory of holographic algorithms [42, 41]. The CSP framework can be viewed as
the special case of the Holant framework in which equality relations of any arity are
always available [15]. The addition of equality relations in CSP makes many sets of
constraints complete that would not be otherwise.

A brief description of the Holant framework is as follows. A signature grid Ω =
(G,F , π) is a triple, where G = (V,E) is an undirected graph, F is a set of functions
on variables from a domain D to a range R (possibly different from D), and π labels
each v ∈ V with a function fv ∈ F of arity equal to the degree of that vertex v and
associates each argument of fv with an edge incident to v. An assignment σ maps
each edge e ∈ E to an element of D and determines a value

∏
v∈V fv(σ |E(v)), where

E(v) denotes the incident edges of v, and σ |E(v) denotes the restriction of σ to E(v).
The counting problem on the instance Ω is the problem of computing the following
sum over all possible assignments σ:

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v)).

For example, consider the Perfect Matching problem on G. This corresponds to
D = {0, 1} and fv, which is the Exactly One function at every vertex of G. Then
σ corresponds to a subset of the edges, and HolantΩ counts the number of perfect
matchings in G. If we use the At-Most-One function at every vertex, then we count
all (not necessarily perfect) matchings. We use the notation Holant(F) to denote the
class of Holant problems where the functions fv are chosen from the set F .

In this paper we consider symmetric Boolean parity Holant problems ⊕Holant(F);
that is, in the definition of HolantΩ, D = R = {0, 1}, F is a set of symmetric functions
with variables in D and range in R, and summation is modulo two. A function or
signature is called symmetric if its output depends only on the Hamming weight of
the input. We often denote a symmetric function by the list of its outputs sorted by
input Hamming weights in ascending order. For example, [0, 1, 1] is the binary OR

function. The output is 1 if the input is 01, 10, or 11, and 0 otherwise. More examples
are given in section 2.5.

1.1. Our contribution. The main dichotomy result exhibits four classes of sig-
nature sets that are polynomial time computable. The first is the class of affine
signatures, A , which express linear equations and are solvable by Gaussian elimi-
nation. The second, M , corresponds to problems that can be reduced to counting
the number of (perfect and general) matchings. The counting counterparts of these
problems are #P-hard in general. The third, F , corresponds to Fibonacci signatures
[13] with the addition of the binary Boolean inversion signature [0, 1, 0]. The fourth,
O , is what we call vanishing signature sets, for which the Holant value is always even.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 2

02
.1

20
.2

.3
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

326 HENG GUO, PINYAN LU, AND LESLIE G. VALIANT

We show that for any other set of symmetric signatures, the ⊕Holant problem is ⊕P-
complete. In particular, subsets of the union of these four classes that are not subsets
of any one are ⊕P-complete.

Theorem 1.1. Let F be a set of symmetric signatures. If F ⊆ A , F ⊆ M ,
F ⊆ F ∪ {[0, 1, 0]}, or F ∈ O , then the parity problem ⊕Holant(F) is computable in
polynomial time. Otherwise it is ⊕P-complete.

In this paper, along the way to proving our main result, we prove dichotomies
(Theorem 5.3) for both the planar and the general case of ⊕Holantc. ⊕Holantc is
concerned with signature sets that contain both of the unary signatures [0, 1] and
[1, 0] (which, like equivalence relations in #CSP problems, often make sets complete
that would not be otherwise).

We also prove a dichotomy result (Theorem 5.4) for the symmetric Boolean parity
problem for 2-3 regular bipartite graphs in the case that the signature set consists
of one signature of arity two and one of arity three, which is the simplest nontrivial
setting (and previously investigated in the Holant framework [13, 14, 31, 10] for #P).
Note that such a dichotomy is not subsumed by our Theorem 1.1 since bipartite
graphs have a more restricted structure than general graphs.

1.2. Related works. Our main theorem, Theorem 1.1, is the first general di-
chotomy result for the Holant framework. No dichotomy theorem is known for com-
parable restrictions of #P, NP, or #kP for k �= 2. For #P, dichotomy results are
known only for Holantc problems, where Holantc denotes that the unary constant
signatures [0, 1] and [1, 0] are assumed to be available. The known results for Holantc

are for the symmetric case over the real numbers [15], over the complex numbers [10],
and for planar graphs in the former case [16]. For NP, Cook and Bruck [18] gave a
dichotomy theorem for singleton sets of constraints of arity up to three in the general
nonsymmetric case.

Analogous dichotomy results have been obtained for the #CSP problemmodulo k.
In Faben’s dichotomy theorem for Boolean #CSP modulo k [25], the affine signatures
form the only polynomially computable class for general k. For our case of k = 2
there is the second class of those that vanish for the simple reason that the solution
sets are are always closed under Boolean complementation and therefore always even
in number. A dichotomy result is also known for the more general setting of weighted
Boolean #CSP modulo k [28], but the tractable classes there appear to have no
immediate counterpart in the parity setting where there are no weights.

Finding analogues of our main result for NP, #P, or #kP for k �= 2 remains
a challenge for the future, as is also the same question for ⊕P for nonsymmetric
signatures. For NP, the analogue of symmetric signatures consists of H-factors [33].
Cornuéjols [19] has given a polynomial time algorithm for a certain class of such
signatures.

Remark. After this paper was completed, some progress was made toward #P
dichotomies regarding the Holant framework. Huang and Lu [30] proved the case of
real weighted symmetric Boolean signatures, and Cai, Guo, and Williams [9] proved
the complex case. Compared to the result in this paper, matching problems, of which
the parity version is tractable, are #P-complete in either real or complex setting. If
weights are restricted to real values, there is no vanishing signature. However, the
capture of vanishing signatures is the key ingredient of the complex dichotomy.

2. Preliminaries.

2.1. Problems and definitions. As previously stated, a signature grid Ω =
(H,F , π) consists of a graph H = (V,E), where each vertex is labeled by a function
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fv ∈ F of arity equal to the degree deg(v) of v in H . The label π associates with each
v the fv ∈ F and also associates each edge incident to v with an argument of fv. The
Holant problem on instance Ω is that of evaluating HolantΩ =

∑
σ

∏
v∈V fv(σ |E(v)),

a sum over all edge assignments σ : E → D.
The framework of Holant problems for #P is usually defined for functions fv

mapping Ddeg(v) → C. In this paper, for ⊕P we assume throughout functions f :
{0, 1}deg(v) → {0, 1}.

A function fv of k arguments can be represented as a truth table of 2k entries.
We use fα to denote the value f(α), where α is a {0, 1} string of length k. A function
f ∈ F is also called a signature. A symmetric function f on k Boolean variables
can be expressed as [f0, f1, . . . , fk], where fi is the value of f on inputs of Hamming
weight i. In this paper we will consider only symmetric signatures. As a signature of
arity k must be placed on a vertex of degree k, we can also view the signature as a
vertex with k dangling edges.

In this paper, where it is not otherwise stated, we view any entry of a signature
as an element of the field Z2 = {0, 1}. The operations and relations on them are then
also viewed as being in this field.

A Holant problem is parameterized by a set of signatures.
Definition 2.1. Given a set of signatures F , we define the following counting

problem as Holant(F):
Input: A signature grid Ω = (G,F , π).
Output: HolantΩ.
The following family Holantc of Holant problems is important [15, 10, 16]. This

is the class of all Holant problems (on Boolean variables) where the graph has some
dangling edges, i.e., edges that have a node of H as one endpoint and an external
input as another, and these can be forced to have value 0 or 1. In other words, the
unary constant signature [1,0] (for the constant function 0) and the unary constant
signature [0,1] (for the constant function 1) are always available for use.

Definition 2.2. Given a set of signatures F , Holantc(F) denotes Holant(F ∪
{[1, 0], [0, 1]}).

In this paper, we consider the parity version of Holant problems.
Definition 2.3. Given a set of signatures F , where each signature in F takes

values from Z2 = {0, 1}, we define the parity problem ⊕Holant(F) as follows:
Input: A signature grid Ω = (G,F , π).
Output: HolantΩ mod 2.
We also define ⊕Holantc problems analogously.
Definition 2.4. Given a set of signatures F , we use ⊕Holantc(F) to denote

⊕Holant(F ∪ {[0, 1], [1, 0]}).
Planar (parity) Holant problems are (parity) Holant problems on planar graphs.

2.2. Holographic reduction. The notions and reductions described in this
subsection and the next are valid for general Holant problems regardless of the base
field. In this paper we consider only the case in Z2.

To introduce the idea of holographic reductions, it is convenient to consider bi-
partite graphs. For a general graph, we can always transform it into a bipartite graph
preserving the Holant value at the expense of a larger signature set. In particular, we
replace each edge in the graph by a path of length 2 and assign to the new vertex the
binary Equality signature (=2) = [1, 0, 1].

We use Holant(R | G) to denote the Holant problem on bipartite graphs H =
(U, V,E), where each signature for a vertex in U or V is from R or G, respectively.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 2

02
.1

20
.2

.3
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

328 HENG GUO, PINYAN LU, AND LESLIE G. VALIANT

An input instance for the bipartite Holant problem is a bipartite signature grid and
is denoted as Ω = (H ; R | G; π). Signatures in R are considered as row vectors (or
covariant tensors); signatures in G are considered as column vectors (or contravariant
tensors) [22].

Holographic transformations are expressed as linear operations on signatures,
where for an n-argument function f the signature is a vector of length 2n that expresses
the value of f at all 2n Boolean inputs. (The symmetric signature notation [f0, . . . , fn]
is merely a length n + 1 abbreviation that is useful for discussing signatures in the
symmetric case.)

For an m-by-m matrix T , the 2m-by-2m matrix that is the tensor product of T
m times is denoted by T⊗n. For a 2-by-2 matrix T and a signature set F , define
TF = {g | ∃f ∈ F of arity n, g = T⊗nf}, and define FT similarly. Whenever we
write T⊗nf or TF , we view the signatures as column vectors; similarly, for fT⊗n or
FT we view them as row vectors.

Let T be an invertible 2-by-2 matrix. The holographic transformation by T is the
following operation: given a signature grid Ω = (H ; R | G; π), for the same graph
H , we get a new grid Ω′ = (H ; RT | T−1G; π) by replacing each signature in R or G
with the corresponding signature in RT or T−1G. This leads to the following result
of Valiant.

Theorem 2.5 (Holant theorem [40]). If there is a holographic transformation
mapping signature grid Ω to Ω′, then HolantΩ = HolantΩ′ .

Therefore, an invertible holographic transformation does not change the complex-
ity of the Holant problem in the bipartite setting. Furthermore, there is a special kind
of holographic transformation, the orthogonal transformation, that preserves binary
equality and thus can be used freely in the general nonbipartite setting.

Proposition 2.6 (Theorem 2.2 in [15]). Suppose T is a 2-by-2 orthogonal ma-
trix (TT T = I2), and let Ω = (H,F , π) be a signature grid. Under a holographic
transformation by T , we get a new grid Ω′ = (H,TF , π) and HolantΩ = HolantΩ′ .

However, the only orthogonal matrices in SL(2,Z2) are ( 1 0
0 1 ) and ( 0 1

1 0 ). These two
matrices can provide little help because one is the identity and the other transforms
signatures to their inverses. This proposition is more useful in the general setting,
and we do need it when moving out of Z2 to prove the tractability for a special set of
signatures.

2.3. Realization. One basic notion throughout the whole paper is realization.
We say a signature f is realizable or constructable from a signature set F if there
is a gadget with some dangling edges such that each vertex is assigned a signature
from F , and the resulting graph, viewed as a black box signature with inputs on
dangling edges, is exactly f . If f is realizable from F , then we can freely add f into
F preserving the complexity.

Formally, such a notion is defined as an F -gate [15, 16]. An F -gate is a tuple
(H,F , π), where H = (V,E,D) is a graph where the edge set consists of regular edges
E and dangling edges D. The labeling π assigns a function from F to each internal
node. The dangling edges define external variables for the F -gate. (See Figure 1 for
an example.) We denote the regular edges in E by 1, 2, . . . ,m and denote the dangling
edges in D by m+ 1, . . . ,m+ n. Then we can define a function Γ for this F -gate as
follows:

Γ(y1, y2, . . . , yn) =
∑

x1,x2,...,xm

H(x1, x2, . . . , xm, y1, . . . , yn),
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H

Fig. 1. An F-gate with 5 dangling edges.

where (y1, y2, . . . , yn) ∈ {0, 1}n denotes an assignment on the dangling edges and
H(x1, x2, . . . , xm, y1, y2, . . . , yn) denotes the value of the signature grid on an assign-
ment of all edges, which is the product of evaluations at all internal nodes. We will
also call this function the signature Γ of the F -gate. An F -gate can be used in a
signature grid as if it is just a single node with the particular signature.

Using the idea of F -gates, we can reduce one Holant problem to another. Let g
be the signature of some F -gate. Then Holant(F ∪ g) ≤T Holant(F). The reduction
is quite simple. Given an instance of Holant(F ∪ g), by replacing every appearance of
g by the F -gate, we get an instance of Holant(F). Since the signature of the F -gate
is g, the values for these two signature grids are identical.

We note that even for a very simple signature set F , the signatures for all F -gates
could be quite complicated and expressive.

2.4. Some useful constructions and observations. First we mention two
very simple kinds of gadget construction. The first is to connect two signatures via
several edges. Let us say the two signatures are f and g. The connection edges are If
from f and Ig from g. Rewrite the signature f as a matrix F where rows are indexed
by input values from If and columns If , and rewrite g as a matrix G where rows are
indexed by input values from Ig and columns Ig. Notice that the index rules of the
two matrices are opposites. The resulting signature in the matrix form is just FG.

Another simple gadget construction is to just put several signatures together and
view them as a new signature, where all dangling edges are inputs edges of the new sig-
nature. The resulting signature is the tensor product of all component signatures. On
the other hand, if a signature can be written as a tensor product of several signatures,
then it can be decomposed into several smaller signatures. This observation leads to
the notion of degeneracy. For symmetric signatures, the only possible degenerate case
is that all component signatures are (the same) unary signatures.

Definition 2.7. A signature is degenerate iff it is a tensor product of unary
signatures.

For a signature f = [f0, f1, . . . , fk] and any 0 ≤ l < h ≤ k, we call [fl, fl+1, . . . , fh]
a subsignature of f . Note that with the help of the two unary signatures [0, 1] and [1, 0],
any subsignature of a given signature is realizable. To see this, if we connect [0, 1] to
f , then it is like forcing the value on the connecting edge to be 1, because otherwise
the unary signature will contribute a multiplicative factor of 0. Hence, the resulting
signature consists of the last k entries [f1, . . . , fk] of the original signature. Similarly,
connecting [1, 0] would give us the first k entries. Repeatedly using these two unary
signatures, we can get any successive entries we want from f , i.e., a subsignature.
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The crucial advantage of considering ⊕Holantc problems is that we can freely use a
subsignature of any signature from the set. This simplifies the needed case analysis.

All the signatures we consider here are in the Boolean domain. If we flip the 0
and 1 in the domain, a symmetric signature will be changed into its reverse, and the
Holant values are the same. That is, the complexity of Holant problems for a set of
signatures is the same as the complexity of Holant problems for the set composed by
those signatures reversed. Another way to view this is by transforming the signature
under the orthogonal matrix ( 0 1

1 0 ). In this paper such an operation will be performed
repeatedly.

2.5. Examples. Here we give several examples to help the reader understand
Holant notation and the results of this paper.

Parity Matching Problem.
Input: A graph G = (V,E) and V0 ⊆ V .
Output: Parity of the number of (partial) matchings that saturate all the vertices

in V0.
Remark. In section 3.3, we show a polynomial algorithm for this problem. In

particular, the parity of perfect matchings is a special case of this problem. Note that
the corresponding counting problem is #P-hard [37]. In the signature language, this
problem is ⊕Holant(F), where all signatures in F are either perfect matching signa-
tures [0, 1, 0, . . . , 0] or partial matching signatures [1, 1, 0, . . . , 0] of arbitrary arities.

The algorithm for the parity matching problem can be generalized to any signature
that is realizable by matchgates. This category of problems is one of the newly found
tractable classes in this paper. The detailed characterization is in section 3.3.

In an instance of an unweighted Holant problem, the signature on each vertex
can be viewed as a degree constraint. A certain degree is allowed if the corresponding
entry of the signature is 1 and not allowed otherwise. The output is the total number
of subsets of edges satisfying all the degree constraints. When a Holant problem
involves only one signature, the input graph has to be regular, and the constraint is
the same for all vertices.

⊕Holant({[1, 0, 0, 1, 0]}).
Input: A 4-regular graph G = (V,E).
Output: The parity of the number of subgraphs where every vertex is either isolated

or of degree 3.
Remark. By Lemmas 4.6 and 7.2, this problem is ⊕P-complete. The correspond-

ing counting problem is also #P-hard. On the other hand, if we do not allow isolated
vertices in the object to count, the problem becomes ⊕Holant({[0, 0, 0, 1, 0]}), which is
equivalent to the parity perfect matching problem on 4-regular graphs and is tractable.

The next problem is also defined by a single signature, but it is tractable because
the signature is what we call a vanishing signature.

⊕Holant({[0, 0, 1, 1, 0]}).
Input: A 4-regular graph G = (V,E).
Output: The parity of the number of subgraphs where all vertices are of degree 2

or 3.
Remark. In section 6.3, we will show that this problem is tractable. The reason

is that there is always an even number of subgraphs satisfying the degree constraint.
Therefore the answer is always 0. The corresponding counting problem is #P-hard.

We call this kind of signature vanishing because the output is always 0. The
vanishing signatures form the other newly found tractable problem family. The details
are given in section 6.
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3. Tractable families. We shall identify three tractable families for ⊕Holantc

problems. The first family, affine signatures, is adopted directly from the correspond-
ing family for #CSP, where it is the only tractable class [20, 21]. The second family
we derive from the Fibonacci signatures. For general counting problems, we also have
a tractable family of Fibonacci signatures, but for parity problems, as we shall show,
the family remains tractable even with the addition of the inversion signature [0, 1, 0].
This addition for general counting problems would give rise to #P-hardness. The
third tractable family, matchgate signatures, is special to parity problems.

3.1. Affine signatures. Affine signatures correspond to simultaneous linear
equations over Z2 and are defined as follows.

Definition 3.1. A signature is affine iff its support is an affine space. We
denote the set of all affine signatures by A .

By definition, an affine signature can be viewed as a constraint defined by a set
of linear equations. Viewing the edges as variables in Z2, every assignment which
contributes 1 in the summation corresponds to a solution which satisfies all the linear
equations. Then the Holant value is exactly the number of solutions of the linear
system, which can be computed in polynomial time.

Theorem 3.2. If F ⊆ A , ⊕Holantc(F) is polynomial time computable.
Here we explicitly list all nondegenerate symmetric affine signatures.
Lemma 3.3. Every nondegenerate symmetric affine signature is of one of the

following forms:
• Equality signatures: [1, 0, 0, . . . , 0, 1].
• Parity signatures: [1, 0, 1, 0, . . . , 0/1] or [0, 1, 0, 1, . . . , 0/1], where the last en-
try depends on whether the arity is odd or even.

3.2. Fibonacci signatures and [0, 1, 0]. The family of Fibonacci signatures
was introduced in [13] to characterize a new family of holographic algorithms. It has
played an important role in some previous dichotomy theorems [13, 15]. Formally, we
have the following definition.

Definition 3.4. A symmetric signature [f0, f1, . . . , fn] is called a Fibonacci
signature iff for 1 ≤ k ≤ n − 2 it is the case that fk + fk+1 = fk+2. We denote the
set of all Fibonacci signatures by F .

The Holant of a grid composed of Fibonacci signatures can be computed in poly-
nomial time [13]. Its parity version is therefore also tractable. But here we shall show
that the tractability still holds even if we extend the set with a signature [0, 1, 0], which
is not a Fibonacci signature. This proof of tractability is based on the properties of
Fibonacci signatures and a new observation on [0, 1, 0] as a parity signature.

Since we only care about the parity of the solutions, [0, 1, 0] can be replaced by
the unsymmetrical signature (0, 1,−1, 0) in R. (Note that here (0, 1,−1, 0) is not a
symmetric signature. In fact, it is in the vector form rather than the abbreviated
form of symmetric signatures.) This (0, 1,−1, 0) is a so-called 2-realizable signature,
which has a special invariant property under holographic transformations [41, 11, 12].
This property plays an important role in the proof.

Theorem 3.5. If F ⊆ F ∪ {[0, 1, 0]}, ⊕Holantc(F) is polynomial time com-
putable.

In the proof of this theorem, we need to use the field of real numbers. This is the
only place in this paper where a signature entry is viewed as a real number rather
than as an entry in the field Z2 = {0, 1}.

Proof. As stated above, we replace [0, 1, 0] by the unsymmetrical signature
(0, 1,−1, 0). We also replace the Fibonacci signatures in the field Z2 by real Fibonacci
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signatures. For example, [1, 1, 0, 1] is replaced by [1, 1, 2, 3]. After the replacement,
the parity of the Holant value does not change. For simplicity, we also denote the set
of real Fibonacci signatures by F . Next we show that Holantc(F ∪ (0, 1,−1, 0)) is
computable in polynomial time.

For a Fibonacci signature f = [f0, f1, . . . , fn] over the real numbers, we have
fk+2 = fk+1 + fk for all k = 0, 1, . . . , n − 2. This is a second-order homogeneous
linear recurrence relation. Thus we have fi = Aλi

1 + Bλi
2 for i = 0, 1, . . . , n, where

λ1 = (1 −√
5)/2, λ2 = (1 +

√
5)/2 are the two roots of its characteristic polynomial

x2 = x+1, and A,B are two real numbers dependent on f0 and f1. In tensor notation,

we have f = A( 1
λ1

)
⊗n

+B( 1
λ2

)
⊗n

. One crucial point is that λ1 and λ2 are the same for
all Fibonacci signatures (while A and B can vary for different signatures). Therefore
we can do a holographic reduction as in Proposition 2.6 under the orthogonal matrix

T =

⎛
⎝ 1√

λ2
1+1

λ1√
λ2
1+1

1√
λ2
2+1

λ2√
λ2
2+1

⎞
⎠.

(We note that this is an orthogonal matrix because λ1λ2 = −1.) This does not change
the Holant value by Proposition 2.6. But all the Fibonacci signatures have a nicer
format since

T⊗nf = T⊗n

(
A

(
1
λ1

)⊗n

+B

(
1
λ2

)⊗n)

= AT⊗n

(
1
λ1

)⊗n

+ BT⊗n

(
1
λ2

)⊗n

= A

(
T

(
1
λ1

))⊗n

+ B

(
T

(
1
λ2

))⊗n

= A

(
1
0

)⊗n

+B

(
0
1

)⊗n

= [A, 0, . . . , 0, B].

For the signature (0, 1,−1, 0), it is easy to verify that T⊗2(0, 1,−1, 0) is det(T )·
(0, 1,−1, 0) and det(T ) = −1. By Proposition 2.6, the Holant value does not change af-
ter the orthogonal transformation. Afterward, all signatures are of the form [A, 0, . . . ,
0, B] or (0, 1,−1, 0). For a signature of the form [A, 0, . . . , 0, B], any valuation which
contributes nonzero to the Holant must have the same value on all its edges. For
(0, 1,−1, 0) any such valuation must have the opposite values on its two edges. Thus,
if the value of one edge in the graph is chosen, the nonzero contribution of its con-
nected component is totally determined. Hence we can compute the Holant value of
one component as a sum of at most two values. The Holant of the whole grid can be
computed by multiplying the values of all connected components.

Next, we shall list explicitly all the nondegenerate binary Fibonacci signatures.
A Fibonacci signature is determined by its first two bits, by definition. These will
be 00, 01, 10, or 11. However, the 00 case leads to the trivial signature, which is
degenerate. Hence we have the following lemma.

Lemma 3.6. Every nondegenerate Fibonacci signature modulo 2 is of one of the
following forms:

• [0, 1, 1, 0, 1, 1, . . . , 0/1],
• [1, 0, 1, 1, 0, 1, . . . , 0/1],
• [1, 1, 0, 1, 1, 0, . . . , 0/1].
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The following lemma regarding the constructability will be useful in the hardness
proof later.

Lemma 3.7. From any nondegenerate ternary Fibonacci signature [0, 1, 1, 0],
[1, 0, 1, 1], or [1, 1, 0, 1] and the two unary signatures [1, 0] and [0, 1], one can real-
ize every nondegenerate Fibonacci signature by some gadget.

Proof. By connecting any two Fibonacci signatures, we can get a longer Fibonacci
signature [13]. We may connect several copies of the given ternary Fibonacci gates via
the pattern in Figure 2 (just to connect them serially). It is easy to verify that the new
Fibonacci signature is also nondegenerate. Therefore, we can realize a nondegenerate
Fibonacci signature of arbitrary length. All three nondegenerate Fibonacci signatures
of arity k are subsignatures of any nondegenerate Fibonacci signature of arity k + 2.
With the help of unary signatures [1, 0] and [0, 1], it is easy to get any subsignature
of a given gate. This competes the proof.

A

B

C

Fig. 2. The gadget to construct longer Fibonacci signatures.

3.3. Matchgate signatures. Matchgates were introduced to simulate classi-
cally certain subclasses of quantum computations [39] and to be the basis of a class
of holographic algorithms [42].

Definition 3.8. A signature is called a matchgate signature iff it can be realized
by a gadget, where each signature used in the gadget is a perfect matching signature
[0, 1, 0, 0, . . . , 0] or a partial matching signature [1, 1, 0, 0, . . . , 0]. We denote the set of
all matchgate signatures by M .

We remark that the notion of matchgates we use here is in its most general sense:
the graph can be either planar or nonplanar, and for each node we can insist on
whether or not it has to be saturated by a matching edge. We shall now prove the
following.

Theorem 3.9. If F ⊆ M , ⊕Holantc(F) is polynomial time computable.
Since F ⊆ M and we also have [1, 0], [0, 1] ∈ M , the problem of ⊕Holantc(F) is

a parity matching problem which we define as follows.
Parity Matching Problem.
Input: A graph G = (V,E) and V0 ⊆ V .
Output: Parity of the number of (partial) matchings that saturate all the vertices

in V0.
This general matching problem can be formalized as a summation of perfect

matchings,

MatchingS(G) =
∑
U⊇V0

PM(G(U)),

where MatchingS(G) is the value we want to compute, PM(G) is the number of
perfect matchings in G, and G(U) is the induced subgraph of G on vertex set U . The
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transformation between a parity matching problem and a ⊕Holantc(M ) problem is
simple. The graph is the same. All the vertices in V0 have perfect matching signatures,
and all the other vertices have partial matching signatures.

Before we give the algorithm for the Parity Matching Problem, we need to intro-
duce the definition of the Pfaffian. The Pfaffian of an n × n skew-symmetric matrix
A is defined to be zero if n is odd, one if n = 0, and if n is even with n = 2k and k >
0, then it is defined as

Pf(A) =
∑
π

επA(i1, i2)A(i3, i4) · · ·A(in−1, in),

where
1. π = [i1, i2, . . . , in] is a permutation on [1, 2, . . . , n];
2. summation is over all such permutations π, where further i1 < i2, i3 <

i4, . . . , i2k−1 < i2k and i1 < i3 < · · · < i2k−1;
3. επ ∈ {1,−1} is the sign of the permutation.

The following fact, due to Cayley [17] (see also [3] Theorem 9.5.2), relates the
Pfaffian to the determinant.

Theorem 3.10. For any 2k × 2k skew-symmetric matrix A,

Det(A) = (Pf(A))2.

In the field Z2, we have x = −x, and hence a skew-symmetric matrix is indeed
a symmetric matrix. Moreover the sign επ = 1 = −1 in Z2 can be ignored. Let A
be the adjacency matrix of a graph G, (i.e., the nonzero elements are Ai,j = Aj,i = 1
for {i, j} ∈ E). Then each monomial in the Pfaffian corresponds to a distinct perfect
matching in G. Therefore, Pf(A) is exactly the parity of the number of perfect
matchings in G. We have

(1) PM(G) = Pf(A) = (Pf(A))2 = Det(A) (mod 2),

where G has an even number of vertices. So the parity of the number of perfect
matchings can be computed in polynomial time. Next we show that this tractability
can be extended to partial matchings. We do this through the Pfaffian sum theorem
[39].

For any n×n matrix A we call a set I = {i1, i2, . . . , ir} ⊆ [n] an index set. Further
we denote by A(I) the r × r submatrix of A on rows and columns in I.

Definition 3.11. The Pfaffian sum of an n× n matrix A is a polynomial over
indeterminates λ1, λ2, . . . , λn such that

PfS(A) =
∑
I⊆[n]

⎛
⎝∏

i	∈I

λi

⎞
⎠Pf(A(I)).

The summation here is over the various principal minors obtained from A by
restricting the indices to some subset I ⊆ [n].

In this paper we need only the instances in which each λi is either 0 or 1. For a
given nonomittable vertex set V0, we can define the character vector �λ = (λ1, . . . , λn)
as follows: for each i, λi = 0 iff i ∈ V0. Thus, in this case the Pfaffian sum of the
character vector �λ is simply the sum of the Pf(A(I)) over those I that contain all the
nonomittable indices.
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We define the n× n matrix Λ(n) as follows:

Λ(n)(i, j) =

⎧⎪⎨
⎪⎩

(−1)j−i+1λiλj if i < j,

(−1)i−jλiλj if i > j,

0 if i = j.

Also for an n× n matrix A we define A+ to be the (n+ 1)× (n+ 1) matrix of which
the first n rows and columns equal A itself, and the (n+1)st row and column entries
are all zero.

The following theorem, which relates the Pfaffian sum to a single Pfaffian, was
proved in [39].

Theorem 3.12. For an n × n skew-symmetric matrix A and indeterminates
λ1, . . . , λn+1,

PfS(A) =

{
Pf(A+ Λ(n)) if n is even,

Pf(A+ + Λ(n+1)) with λn+1 = 1 if n is odd.

Thus, a Pfaffian sum can be computed in polynomial time. The relation (1)
between perfect matchings and Pfaffians can be therefore extended to one between
matchings and Pfaffian sums:

(2) MatchingS(G) =
∑
U⊇V0

PM(G(U)) =
∑
U⊇V0

Pf(A(U)) = PfS(A)(�λ) (mod 2).

This relation gives a polynomial time algorithm for the Parity Matching Problem and
completes the proof of Theorem 3.9.

Now we go on to list explicitly all the nondegenerate symmetric matchgate sig-
natures. Useful matchgate identities in [8] is an essential tool for characterizing the
realizability of matchgates. For completeness we quote the identities as follows.

A pattern α is an m-bit string, i.e., α ∈ {0, 1}m. A position vector P = {pi},
i ∈ [l], is a subsequence of {1, 2, . . . ,m}, i.e., pi ∈ [m] and p1 < p2 < · · · < pl. It can
also be viewed as an m-bit string, whose (p1, p2, . . . , pl)th bits are 1, and the others
are 0. Let ei ∈ {0, 1}m be the pattern with 1 in the ith bit and 0 elsewhere. Let α+β
denote the bitwise XOR of the patterns α and β.

Proposition 3.13 (matchgate identities for signatures). For a signature F
realizable by perfect matching gates, for any pattern α ∈ {0, 1}m, any l (0 < l ≤ m),
and any position vector P = {pi}, i ∈ [l], the following identity holds:

(3)
l∑

i=1

(−1)iF (α+ epi)F (α+ p+ epi) = 0.

Lemma 3.14. Every nondegenerate symmetric matchgate signature is of one of
the following forms:

• Perfect matching signatures: [0, 1, 0, 0, . . . , 0] or [0, 0, . . . , 0, 1, 0].
• Partial matching signatures: [1, 1, 0, 0, . . . , 0] or [0, 0, . . . , 0, 1, 1].
• Parity signatures: [1, 0, 1, 0, . . . , 0/1] or [0, 1, 0, 1, . . . , 0/1].

Proof. We first prove that every nondegenerate symmetric signature that is re-
alizable from perfect and partial matching signatures is of one of the forms claimed
in the lemma. The definition of matchgate signatures here is slightly different from
that in [39, 38, 8] since we do not require the gadget to be planar [42] and do not

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 2

02
.1

20
.2

.3
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

336 HENG GUO, PINYAN LU, AND LESLIE G. VALIANT

use modifiers [39]. However, since 1 ≡ −1 (mod 2), our signatures here are equivalent
to those with modifiers. Also, matchgate signatures in the field Z2 also satisfy the
useful matchgate identities above if all the signatures involved are perfect matching
signatures.

If some of the nodes used in the constructing gadget are omittable (i.e., they
have partial matching signatures), we transform the instance into a perfect matchings
instance using Theorem 3.12 as follows. We add edges between every pair of partial
matching nodes. If there is an odd number of nodes in total, we add an additional
node and connect it also to all the partial matching nodes. By Theorem 3.12, after
the transformation, we can compute the parity of the number of matchings in the
original graph as a parity of the perfect matchings in the modified graph.

To deal with general matchgate signatures, we need the Holant value after the
removal of various subsets of the omittable nodes. After removing some nodes, the
parity of the number of the remaining nodes may change. As discussed above, it
is only when there is an odd number of nodes remaining that we need to add an
additional node. Here we slightly change our perspective. We view this additional
node also as a special omittable external node. If there is an odd number of nodes
remaining, we view this external node as a remaining node as well; otherwise if there
is an even number of nodes remaining, we view it as deleted. If f is the signature for
the original matchgate and g is the signature for the corresponding matchgate after
the transformation, then g(α,⊕α) = f(α) holds, where ⊕α is 0 or 1 according to the
parity ⊕i=1,2,...,mαi. This g has to satisfy the above matchgate identities (3).

In the following, we assume that the original graph has an odd number of nodes.
The case of an even number is similar. Let f = [f0, f1, . . . , fm] be the signature of the
original matchgate, and let g be the signature after the transformation and addition
of the external node.

For m = 2, all the nondegenerate symmetric signatures are of the forms claimed
in the lemma.

We now consider m ≥ 3 and apply the matchgate identities (3) to the symmetric
signature f . Consider the pattern 100α0, where α has Hamming weight 2i and 0 ≤
2i ≤ m− 3. Let the position vector be 111000 · · ·01. Then (3) gives

0 = g(000α0)g(111α1)− g(110α0)g(001α1)+ g(101α0)g(010α1)− g(100α1)g(011α0).

Translating back to f , we get

0 = f2if2i+3 − f2i+2f2i+1 + f2i+2f2i+1 − f2i+1f2i+2 = f2if2i+3 − f2i+2f2i+1.

For m = 3, this f0f3 = f1f2 is the only identity.

For m ≥ 4, we use the matchgate identities (3) again. Consider the pattern
1000α⊕α where α has Hamming weight i and 0 ≤ i ≤ m− 4. Let the position vector
be 111100 · · ·0. Then (3) gives

0 = g(0000α,⊕α)g(1111α,⊕α)− g(1100α,⊕α)g(0011α,⊕α)

+ g(1010α,⊕α)g(0101α,⊕α)− g(1001α,⊕α)g(0110α,⊕α).

Translating back to f , we get

0 = fifi+4 − fi+2fi+2 + fi+2fi+2 − fi+2fi+2 = fifi+4 − fi+2fi+2.
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Consider the pattern 10m and the position vector 1m ⊕ (m), where ⊕(m) is the
parity of m. Then we have

0 = g(0m+1)g(1m ⊕ (m))− g(110m−1)g(001m−2 ⊕ (m))

+ g(1010m−2)g(0101m−3 ⊕ (m)) − g(10010m−3)g(01101m−4 ⊕ (m))± · · · .

The terms cancel except for the first two. Translating into f , we get f0fm = f2fm−2.
Similarly, consider the pattern 10m and the position vector 1m−10 ⊕ (m − 1).

Then we have

0 = g(0m+1)g(1m−10⊕ (m− 1))− g(110m−1)g(001m−30⊕ (m− 1))

+ g(1010m−2)g(0101m−40⊕ (m− 1))− g(10010m−3)g(01101m−50⊕ (m− 1))± · · · .

The terms cancel except for the first two. Translating into f , we get f0fm−1 = f2fm−3.
Similarly, we can also get f1fm = f3fm−2 and f1fm−1 = f3fm−3.

These relations imply that the subsequence of the signature for even (or odd)
indices is a geometric sequence. In this field of Z2, there are only four types of
geometric sequences. They are

1. [0, 0, . . . , 0],
2. [1, 0, 0, . . . , 0],
3. [0, 0, . . . , 0, 1],
4. [1, 1, . . . , 1].

There are 4 × 4 = 16 possible combinations for the even subsequence and the odd
subsequence. We use type (i, j) to denote the sequence whose odd subsequence is
of type i and even subsequence is of type j. Types (1, 1), (4, 4) are degenerate.
Types (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), (3, 3), (4, 1) are listed in the lemma. We
need only rule out the remaining six types (2, 3), (2, 4), (3, 2), (3, 4), (4, 2), (4, 3). For
(2, 4), the first four entries are [1, 1, 0, 1], which does not satisfy f0f3 = f1f2. This
matchgate identity also rules out (4, 2), whose first four entries are [1, 1, 1, 0]. For
(3, 4) and (4, 3), their last four entries do not satisfy fm−3fm = fm−1fm−2. For (2, 3),
it has form [1, 0, . . . , 0, 1] or [1, 0, . . . , 0, 1, 0]. It violates either f0fm = f2fm−2 or
f0fm−1 = f2fm−3. For (3, 2), we can similarly argue that it violates either f1fm =
f3fm−2 or f1fm−1 = f3fm−3.

This completes the first part of the proof, namely, that all the realizable matchgate
signatures are of one of the claimed forms. The realizability of these signatures as
matchgate signatures will follow from Lemma 3.16.

Next we prove some realizability properties regarding symmetric matchgate sig-
natures, which will be used in the proof of the dichotomy for the parity Holantc

problem.
Lemma 3.15. Every parity signature can be realized by the signatures [0, 1], [1, 0],

and [0, 1, 0, 1] (or [1, 0, 1, 0]).
Proof. We may connect instances of the signature [0, 1, 0, 1] (or [1, 0, 1, 0]) to get

an arbitrarily long signature using the pattern shown in Figure 3. Note that in general
such a gadget will not result in a symmetric signature. However, in the situation here
it is not hard to check that the resulting signature is indeed symmetric. In fact it
is either [1, 0, 1, 0, . . . , 0/1] or [0, 1, 0, 1, . . . , 0/1], depending on the arity as well as on
which of [0, 1, 0, 1] or [1, 0, 1, 0] you put in the gadget. Every parity signature is a
subsignature of such a gate.

Lemma 3.16. Every parity signature or perfect matching signature can be realized
by the signatures [0, 1], [1, 0], and [0, 1, 0, 0] (or [0, 0, 1, 0]).
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A

B

C

Fig. 3. The gadget for [0, 1, 0, 1, 0, 1].

A

B
C

Fig. 4. The triangle gadget for [0, 1, 0, 1].

Proof. By symmetry, we need only prove the lemma for [0, 1, 0, 0]. First we
observe that if we place [0, 1, 0, 0] at every vertex in the triangle gadget shown in
Figure 4, the resulting signature is [0, 1, 0, 1]. Then by Lemma 3.15, every parity
signature can be constructed. By connecting one [1,0] to [0, 1, 0, 0], we can get [0, 1, 0].
Then we place [0, 1, 0, 0] at A and B and [0, 1, 0] at C in Figure 5. It is similar
to the case of the gadget in Figure 3 that in general the resulting signature is not
necessarily symmetric, but for the particular signatures used here in the modulo 2
setting, the resulting signature, [0,1,0,0,0], is indeed symmetric. Similarly, we may
always connect [0, 1, 0, . . . , 0] of arity k with [0, 1, 0, 0] via [0, 1, 0], and the resulting
signature is [0, 1, 0, . . . , 0] of arity k+1. Therefore we can also construct every perfect
matching signature. This completes the proof.

AB
C

Fig. 5. The gadget for [0, 1, 0, 0, 0] and [1, 1, 0, 0, 0].

Lemma 3.17. Every matchgate signature can be realized by the signatures [0, 1],
[1, 0], and [1, 1, 0, 0] (or [0, 0, 1, 1]).

Proof. By symmetry, we need only prove the lemma for [1, 1, 0, 0]. Note that
we can get [1, 1] from [1, 1, 0, 0] by connecting it with two unary signatures [1, 0].
By connecting [1, 1] with [1, 1, 0, 0], we can get [0, 1, 0]. Then we place [1, 1, 0, 0] at
A and B and [0, 1, 0] at C in Figure 5. As in the proof of Lemma 3.16, we can
get a symmetric signature [0, 1, 0, 0, 0]. Thus, by Lemma 3.16, any perfect matching
signature is constructable from that. Similarly, we may always connect [0, 1, 0, . . . , 0]
of arity k with [1, 1, 0, 0] via [0, 1, 0], and the resulting signature is [1, 1, 0, . . . , 0] of
arity k + 1. In this way, we can construct every partial matching signature. By
definition, we can further construct all matchgate signatures.

Remark. We note that every degenerate signature is a member of each of the
above three tractable families. For affine signatures and matchgate signatures, this
can be easily verified from their definition. For Fibonacci signatures, we note that
our Definition 3.4 as stated is for nondecomposable signatures. A signature is non-
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decomposable iff it cannot be written as a tensor product of two signatures of strictly
smaller arities. In this sense [1, 1, 0, 1]⊗ [0, 1, 1, 0] is also considered to be a Fibonacci
signature. All the properties stated here are also valid for this extended notion of
Fibonacci signatures. In this sense, it is clear that all the degenerate signatures are
Fibonacci signatures since they can be decomposed to unary signatures, which are
Fibonacci by definition.

4. Some hardness results. In this section, we prove several hardness results
regarding ⊕Holantc problems. These results are preparations for proving dichotomy
theorems. Many of them are for low arity signature sets. As we will see, to handle
general cases it will come down to lower arity cases.

4.1. An initial hard problem. As the starting point of everything, we first
consider the problem of ⊕Pl-Rtw-Mon-3CNF. Pl-Rtw-Mon-3CNF is a special case
of the satisfying problem for 3CNF formulae. “PL” means it is restricted to planar
graphs. “Rtw” (read twice) means that every variable only appears twice in clauses.
“Mon” (monotone) means that for every variable only itself or its negation appears,
but not both. Then w.l.o.g. we can assume all variables appear in the positive form.
⊕Pl-Rtw-Mon-3CNF is the parity version of it.

To transform ⊕Pl-Rtw-Mon-3CNF into the Holant setting, we can use vertices
to represent all clauses and variables. We draw an edge between a clause vertex and
a variable vertex if that variable appears in the clause. Due to the restrictions Rtw
and 3CNF, the resulting graph is a 2-3 bipartite graph. Moreover, a variable that
appears only positively can be viewed as the signature [1, 0, 1], which means it can be
absorbed. The signature on each clause vertex is [0, 1, 1, 1] since it is a clause of a CNF
formula. So, in the end, this problem is translated into planar ⊕Holant([0, 1, 1, 1]) in
the Holant language.

In [41], Valiant showed that ⊕Pl-Rtw-Mon-3CNF is ⊕P-hard.
Theorem 4.1. Planar ⊕Holant([0, 1, 1, 1]) and equivalently planar ⊕Holant ([1, 1,

1, 0]) are ⊕P-complete.
Remark. All hardness results in this paper for ⊕Holantc, but not for ⊕Holant,

will hold even if we restrict the input to planar graphs. This is because the above
starting point is true for planar graphs, and all the gadgets used in those reductions
are also planar.

This ⊕Holant([0, 1, 1, 1]) can also be viewed as ⊕Holant([1, 0, 1]|[0, 1, 1, 1]) in the
sense that any instance expressible as one can also be expressed as an instance of the
other. In fact, as noted in section 2, one can freely insert a new vertex on any edge
by assigning an Equality2 signature on it, and freely “absorb” any degree 2 vertex
with an Equality2.

We now show that the holographic transformation ( 1 0
1 1 ), the Holant value of

⊕Holant([1, 0, 1]|[0, 1, 1, 1]), is the same as that of ⊕Holant ([1, 1, 0]|[1, 0, 0, 1]). Here
we provide some details to illustrate how the holographic transformation works. For
brevity, in later proofs we will not repeat this. We have G = [1, 0, 1], R = [0, 1, 1, 1],
and the transformation matrix T = ( 1 0

1 1 ). The resulting signatures G′ and R′ should
satisfy that G′ = T⊗2G and R = R′T⊗3, so R′ = R(T−1)⊗3. From the first equation,
we have ⎛

⎜⎜⎝
1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
1
0
0
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1
1
1
2

⎞
⎟⎟⎠ ≡

⎛
⎜⎜⎝
1
1
1
0

⎞
⎟⎟⎠ (mod 2)
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so that G′ = [1, 1, 0]. Note that T−1 ≡ T (mod 2). Similarly, from the latter equation,
we have

(
0 1 1 1 1 1 1 1

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
7 4 4 2 4 2 2 1

)
.

Notice that the resulting signature [7, 4, 2, 1] ≡ [1, 0, 0, 1] (mod 2). Thus, the trans-
formed signatures are {[1, 1, 0]|[1, 0, 0, 1]}.

Corollary 4.2. ⊕Holant([1, 1, 0]|[1, 0, 0, 1]) and, equivalently, ⊕Holant([0, 1, 1]|
[1, 0, 0, 1]), are ⊕P-complete.

Remark. In fact, the result above is also shown in [41]. The problem ⊕Holant
([1, 1, 0]| [1, 0, 0, 1]) is called ⊕Pl-3/2-Bip-VC and is further equivalent to ⊕Holant
([1, 1, 0]| [1, 1, 1, 0]) under holographic transformations. This will be illustrated later
in section 5.2.

4.2. More hardness results. Next we establish some further hardness results
for ⊕Holantc problems. First we give a quick generalization of Corollary 4.2.

Corollary 4.3. ⊕Holantc([0, 1, 1], [1, 0, . . . , 0, 1]) is ⊕P-complete, as long as the
number of 0’s is at least 2.

Proof. Assume we have k 0’s in the middle of the signature. If k = 2, by
Corollary 4.2, ⊕Holant([0, 1, 1], [1, 0, 0, 1]) is ⊕P-complete. Otherwise we show how to
construct [1, 0, 0, 1] from the longer equality signature. We can get the unary signature
[1, 1] by connecting [0, 1] with [0, 1, 1]. If we connect [1, 1] with [1, 0, . . . , 0, 1], the
resulting signature is [1, 0, . . . , 0, 1], which has one fewer 0. Thus, we may connect
k − 2 copies of [1, 1] with [1, 0, . . . , 0, 1] to get [1, 0, 0, 1].

The following results deal with the case when the signature set contains both
matchgates and Fibonacci signatures. We first show a base case and then reduce the
general case to it.

Lemma 4.4. ⊕Holantc([0, 1, 0, 1, 0], [0, 1, 1, 0]) is ⊕P-complete.

Proof. First we observe that if we place [0, 1, 0, 0, 0] at vertices A,B,C and
[0, 1, 1, 0] at vertex O in Figure 6, the resulting signature is [1, 1, 1, 0]. Thus, given
a signature grid composed of [1, 1, 1, 0]’s, we can construct a signature grid com-
posed of [0, 1, 0, 0, 0]’s and [0, 1, 1, 0]’s having the same value. By Theorem 4.1,
⊕Holant([1, 1, 1, 0]) is ⊕P-complete. Therefore ⊕Holantc([0, 1, 0, 0, 0], [0, 1, 1, 0]) is
⊕P-complete.

Next we show that this can be further simulated by [0, 1, 0, 1, 0] and [0, 1, 1, 0]. We
may treat this grid of {[0, 1, 0, 0, 0], [0, 1, 1, 0]} as a bipartite graph by replacing every
edge with a signature [1, 0, 1], and then performing the holographic transformation
( 1 1
0 1 ). [1, 0, 1] will be transformed into [0, 1, 1], and [0, 1, 0, 0, 0] into [0, 1, 0, 1, 0], while

[0, 1, 1, 0] remains unchanged. This implies that ⊕Holantc([0, 1, 0, 1, 0], [0, 1, 1, 0]) is
⊕P-complete, as [0, 1, 1] is easily constructed from [0, 1, 1, 0] and [1, 0].

Corollary 4.5. If F contains a nondegenerate symmetric signature in M
and a nondegenerate Fibonacci signature, both of which have arity at least 3, then
⊕Holantc(F) is ⊕P-complete.
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A

B
C

O

Fig. 6. The gadget to construct [1, 1, 1, 0].

AB

Fig. 7. The unsymmetrical gadget.

Proof. By Lemma 3.14, any nondegenerate symmetric signature in M is a per-
fect matching signature, a partial matching signature, or a parity signature. Then
by Lemmas 3.15, 3.16, and 3.17, we can always construct all the parity signatures,
including [0, 1, 0, 1, 0], from a nondegenerate matchgate signature with arity at least
3 and two unary signatures [1, 0] and [0, 1].

By Lemma 3.7, we can construct all the Fibonacci signatures, including [0, 1, 1, 0],
from a nondegenerate Fibonacci signature with arity at least 3 and unary signatures
[1, 0] and [0, 1].

To sum up, we can construct both [0, 1, 0, 1, 0] and [0, 1, 1, 0] from F∪{[1, 0], [0, 1]}.
Thus, by Lemma. 4.4, ⊕Holantc(F) is ⊕P-complete.

This result implies that simultaneous occurrence of matchgates and Fibonacci
signatures leads to ⊕P-completeness. Similarly, we have the following lemma, which
shows that the simultaneous occurrence of matching signatures and equality signatures
also leads to ⊕P-completeness.

In the following proof we will use an interesting gadget construction technique,
which we call clustering. The gadget we use is not symmetric, as in Figure 7. Thus,
when plugging in signatures, the resulting signature is not guaranteed to be symmet-
ric. However, if we cluster its edges pairwise (as shown in Figure 7) and guarantee
that the values of both edges are forced to be the same, then it will behave like a
symmetric signature of half the arity. To force that is equivalent to saying that if the
values of the two edges are different, then the total Holant value is 0. To do this, we
usually work in a bipartite graph, construct a long equality signature on the other
side, and cluster its edges to use it as an equality of half the arity. To get a nonzero
value out of an equality gate, all values must be equal. Hence, in particular, every
pair of clustered edges has the same value.

Lemma 4.6. The parity problems ⊕Holantc([0, 0, 1, 0], [1, 0, 0, . . . , 0, 1]), ⊕Holantc

([0, 1, 0, 0], [1, 0, 0, . . . , 0, 1]), ⊕Holantc([0, 0, 1, 1], [1, 0, 0, . . . , 0, 1]), and ⊕Holantc([1, 1,
0, 0], [1, 0, 0, . . . , 0, 1]) are all ⊕P-complete if the arity of the equality signature is at
least 3.

Proof. By symmetry, we need only prove the lemma for [0, 1, 0, 0] and [1, 1, 0, 0].
By Lemma 3.17, we can construct [0, 1, 0, 0] from [1, 1, 0, 0]. So it is sufficient to prove
that ⊕Holantc([0, 1, 0, 0], [1, 0, 0, . . . , 0, 1]) is ⊕P-complete.

First we reduce the arity of an equality gate of arity at least 5 by connecting an
arbitrary pair of its dangling edges. Eventually it will become an equality gate of
arity 3 or 4 depending on the parity of the original gate’s arity. For either case we can
realize an equality gate [1, 0, 0, 0, 0, 0, 1] of arity 6. It will be used as the long equality
gate in the clustering as a shorter [1, 0, 0, 1].

On the other hand, we connect one edge of two [0, 1, 0, 0] gates as in Figure 7.
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This is the unsymmetric gadget we use. As mentioned above for clustering, under
the guarantee this gate behaves like [1, 1, 0]. With the arity 3 equality gate, we
can simulate ⊕Holant([1, 1, 0]|[1, 0, 0, 1]). Thus, by Corollary 4.2, ⊕Holantc([0, 1, 0, 0],
[1, 0, 0, . . . , 0, 1]) is ⊕P-complete. This completes the proof.

This lemma implies the following direct corollary for signatures that contain both
equality and matching signatures as subsignatures.

Corollary 4.7. ⊕Holantc([1, 0, . . . , 0, 1, 0]) and ⊕Holantc([1, 0, . . . , 0, 1, 1]) are
⊕P-complete, as long as the number of 0’s is at least 2.

Finally, there are still two more special cases not covered by the above. They can
be treated in more or less the same manner. The clustering is used again.

Lemma 4.8. ⊕Holantc([0, 0, 1, 0, 0]) and ⊕Holantc([0, 0, 1, 0, 1]) are ⊕P-complete.
Proof. We show this claim by the same technique as that employed in the proof of

Lemma 4.6. Note that [0, 0, 1, 0] is a subsignature of both [0, 0, 1, 0, 0] and [0, 0, 1, 0, 1].
We need only construct the arity 6 equality signature [1, 0, 0, 0, 0, 0, 1].

If we place [0, 0, 1, 0, 0] at every vertex in the gadget shown in Figure 8, the
resulting signature is [1, 0, 0, 0, 1]. Connecting one edge of two [1, 0, 0, 0, 1] gates, we
can get the gate [1, 0, 0, 0, 0, 0, 1].

The case of [0, 0, 1, 0, 1] is more complex. We can get [1, 0, 1, 0, 0] by connecting a
[0,1,0] at each edge of [0, 0, 1, 0, 1]. Then we place this [1, 0, 1, 0, 0] at B and [0, 0, 1, 0, 1]
at A in the gadget in Figure 8. The combined gadget is depicted in Figure 9, where
the signatures of nodes C1, C2, C3, and C4 are [0, 1, 0]. The resulting signature is
again [1, 0, 0, 0, 1]. The remaining proof is the same as that of [0, 0, 1, 0, 0].

We need to mention that the gadget in Figure 8 does not necessarily simulate a
symmetric signature, but it does in the modulo 2 setting with the specific signatures
that we put in the proof above.

AB

Fig. 8. The gadget to construct
[1, 0, 0, 0, 1] from [0, 0, 1, 0, 0].

AB

C1

C2

C3

C4

Fig. 9. The gadget to construct
[1, 0, 0, 0, 1] from [0, 0, 1, 0, 1].

5. Two dichotomy theorems. Based on the algorithms in section 3 and the
hardness results in section 4, we can show the dichotomy theorem for ⊕Holantc prob-
lems, which is a stepping stone toward the final dichotomy.

As an aside, we also show a dichotomy theorem for the 2-3 bipartite regular
graphs with a single signature on either side. This case is not covered by the general
dichotomy because the underlying graph has a more restricted structure.

5.1. Dichotomy for ⊕Holantc problems. At first we mention some normal-
ization of the signature set F . Any symmetric degenerate signature is of the form
[x, y]⊗k. It can be replaced by the corresponding unary signature [x, y] without chang-
ing the complexity of the problem. Hence, we always assume that every signature in
F of arity greater than 1 is nondegenerate.
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Also as we mentioned before, for a signature f and its inverse f−1, their Holant
values for any graph are the same. Thus, in the following proofs we will often ignore
the reversal case.

If there is a single signature that does not belong to the three tractable sets, then
the ⊕Holant problem is hard. Formally, we have the following lemma.

Lemma 5.1. For a signature set F , if there exists a single signature f ∈ F
such that f �∈ A ∪ M ∪ (F ∪ {[0, 1, 0]}), then the parity problem ⊕Holantc(F) is
⊕P-complete.

The proof is a case-by-case analysis. Basically our discussion is in terms of the
maximum number of consecutive “0” bits and then that of “1” bits in its symmetric
form. But before that we will take some precautions.

Proof. First we notice that M contains all signatures with arity less than or equal
to two. Thus, the arity of f is at least three.

Then we rule out some patterns that will later appear more than once. Assume f
contains [0, 1, 1, 0], [1, 0, 1, 1], or [1, 1, 0, 1] as a subsignature. Because f �∈ F , it must
extend that subsignature in either one or both of the directions. Thus f must contain
[0, 1, 1, 0, 0], [1, 0, 1, 1, 1], [1, 1, 0, 1, 0] or their reversals as a subsignature.

In fact, any of them would lead to ⊕P-completeness as follows:

• For [0, 1, 1, 0, 0], ⊕Holantc(F) is ⊕P-complete by Corollary 4.5 since it con-
tains both the Fibonacci signature [0, 1, 1, 0] and the matchgate signature
[1, 1, 0, 0] as subsignatures.

• For [1, 0, 1, 1, 1], ⊕Holantc(F) is ⊕P-complete by Theorem 4.1 since it con-
tains [0, 1, 1, 1] as its subsignature.

• For [1, 1, 0, 1, 0], ⊕Holantc(F) is ⊕P-complete by Corollary 4.5 since it con-
tains both the Fibonacci signature [1, 1, 0, 1] and the matchgate signature
[1, 0, 1, 0] as its subsignatures.

Next we consider the maximum number of consecutive 0 bits of f in its symmetric
form. First we assume f contains at least two consecutive 0’s. Then consider a se-
quence of consecutive 0’s of the maximum length k0 in f . If both ends of this sequence
are 1, f must contain a subsignature of the form [1, 0, . . . , 0, 1, 0], [1, 0, . . . , 0, 1, 1] or
their reversals, because otherwise f is an equality signature [1, 0, . . . , 0, 1] ∈ A . Then
by Corollary 4.7, ⊕Holantc(F) is ⊕P-complete.

Otherwise, w.l.o.g., we may assume that the first k0 bits of f are 0. Then we
consider the number of subsequent 1’s after these to be 0. It must be one of the
following three cases:

• If there are more than three 1’s, then we have [0, 1, 1, 1] as its subsignature,
and by Theorem 4.1 we are done.

• If there are just two 1’s, f cannot end here because the partial matching
gate [0, . . . , 0, 1, 1] is in M . Then we have [0, 0, 1, 1, 0] as a subsignature. It
contains [0, 1, 1, 0], and this has been discussed above.

• If there is only one 1, f cannot end because [0, . . . , 0, 1] is degenerate. Also
because [0, . . . , 0, 1, 0] is in M , f must be of the form [0, . . . , 0, 1, 0, 0] or
[0, . . . , 0, 1, 0, 1]. By Lemma 4.8 both cases are ⊕P-complete.

Now we deal with the case that f contains no two consecutive 0’s. Consider the
maximum number k1 of consecutive 1’s in f . If k1 ≥ 3, f must contain [0, 1, 1, 1] or its
reversal, and we get ⊕P-completeness by Theorem 4.1. If k1 = 1, f must be a parity
signature which is impossible. So we have k1 = 2. But in that case f must contain
a Fibonacci signature [0, 1, 1, 0], [1, 0, 1, 1], or [1, 1, 0, 1] as its subsignature, which is
already shown to imply ⊕P-completeness.
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In order to show our dichotomy, the case left is that F ∈ A ∪M ∪(F ∪{[0, 1, 0]}),
but F is not a subset of any of them. The next lemma shows that this case also implies
⊕P-completeness.

Lemma 5.2. For a signature set F , if F ⊆ A ∪ M ∪ (F ∪ {[0, 1, 0]}), but
F �⊆ A , F �⊆ M , and F �⊆ F ∪ {[0, 1, 0]}, then the parity problem ⊕Holantc(F) is
⊕P-complete.

Proof. Since F �⊆ M and every signature with arity at most 2 is a matchgate
signature, there must exist a signature f ∈ F of arity at least 3, which is not a
matchgate signature. Therefore f is an equality signature or a Fibonacci signature of
arity at least 3.

If f is an equality signature [1, 0, . . . , 0, 1], and because F is not a subset of A ,
there must be a signature in F that contains a subsignature [0, 1, 1] or [0, 1, 0, 0].
According to Corollary or Lemma 4.6, ⊕Holantc(F) is ⊕P-complete.

If f is a Fibonacci signature with arity at least 3, and because F is not a subset
of F ∪ {[0, 1, 0]}, there must be a ternary matchgate or an equality signature in F
since all binary signatures are also in F ∪ {[0, 1, 0]}. Depending on which signature
is present, we apply either Corollary 4.3 or Corollary 4.5 to conclude ⊕Holantc(F) is
always ⊕P-complete.

In section 3 we have shown that if F ⊆ A , F ⊆ M , or F ⊆ F ∪ {[0, 1, 0]},
then ⊕Holantc(F) is computable in polynomial time. Together with the above two
lemmas, we have the dichotomy of ⊕Holantc problems.

Theorem 5.3. If F ⊆ A , F ⊆ M , or F ⊆ F∪{[0, 1, 0]}, then the parity problem
⊕Holantc(F) is computable in polynomial time. Otherwise it is ⊕P-complete. The
same statement also holds for planar graphs.

5.2. Dichotomy for 2-3 regular graphs. The following dichotomy for 2-3
regular graphs is a side product along the way to proving the ⊕Holant dichotomy. It
is not subsumed into the general dichotomy because the underlying graph has a better
structure. This case is of independent interest because many problems investigated in
[41] correspond to certain cases here. Also, the same setting was previously studied
in the Holant framework [13, 14, 31, 10] for #P.

Theorem 5.4. Let f2 = [y0, y1, y2] and g3 = [x0, x1, x2, x3] be two Boolean
symmetric signatures. If this signature pair is any of the six [1, 0, 1]|[0, 1, 1, 1], [1, 0, 1]|
[1, 1, 1, 0], [1, 1, 0]|[1, 0, 0, 1], [0, 1, 1]|[1, 0, 0, 1], [0, 1, 1]|[0, 1, 1, 1], and [1, 1, 0]|[1, 1, 1, 0],
then ⊕Holant([y0, y1, y2]|[x0, x1, x2, x3]) is ⊕P-complete. In all other cases it is poly-
nomial time computable. The same statement also holds for planar graphs.

Proof. The first four hardness results are exactly the starting points given in The-
orem 4.1 and Corollary 4.2. The hardness for [0, 1, 1]|[0, 1, 1, 1] (and symmetrically
[1, 1, 0]|[1, 1, 1, 0]) is proved by Valiant in [41] as ⊕Pl-3/2Bip-Mon-2CNF. This can be
proved also by holographic transformation from ⊕Holant([0, 1, 1]|[1, 0, 0, 1]) as follows.
We prove it for [0, 1, 1]|[0, 1, 1, 1], and the proof of [1, 1, 0]|[1, 1, 1, 0] is similar. Under
the basis T = [ 1 1

0 1 ] (notice that T−1 = T under module 2), we have T⊗3[0, 1, 1, 1] =
[1, 0, 0, 1] and [0, 1, 1]T⊗2 = [0, 1, 1]. Therefore, ⊕Holant([0, 1, 1]|[0, 1, 1, 1]) is polyno-
mially equivalent to ⊕Holant([0, 1, 1]|[1, 0, 0, 1]), which is ⊕P-complete.

Now, we consider the tractable cases. Most of them belong to one of the identified
tractable families directly, as summarized in the following table (we omit all the
degenerate cases and some symmetric cases).
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g3 | f2 [0, 1, 0] [1, 0, 1] [1, 1, 0]
[0, 0, 1, 0] M M M
[0, 0, 1, 1] M M M
[0, 1, 0, 0] M M M
[0, 1, 0, 1] A and M A and M M
[0, 1, 1, 0] F ∪ {[0, 1, 0]} F F
[0, 1, 1, 1] Tractable ⊕P-complete Tractable
[1, 0, 0, 1] A A ⊕P-complete
[1, 0, 1, 0] A and M A and M M
[1, 0, 1, 1] F ∪ {[0, 1, 0]} F F
[1, 1, 0, 0] M M M
[1, 1, 0, 1] F ∪ {[0, 1, 0]} F F
[1, 1, 1, 0] Tractable ⊕P-complete ⊕P-complete

There are three entries marked “Tractable.” They do not belong to any tractable
family directly, but we show that after a holographic reduction they do. Under the ba-
sis T = [ 1 1

0 1 ], we have that⊕Holant([0, 1, 0]|[0, 1, 1, 1]) is equivalent to ⊕Holant([0, 1, 0]
|[1, 0, 0, 1]), for which we have a polynomial algorithm since both signatures are affine.
The problem of⊕Holant([0, 1, 0]|[1, 1, 1, 0]) is symmetric with⊕Holant([0, 1, 0]|[0, 1, 1, 1]),
so it is also in P. Under the same basis T = [ 1 1

0 1 ], we have that⊕Holant([1, 1, 0]|[0, 1, 1, 1])
is polynomially equivalent to ⊕Holant([1, 0, 1]|[1, 0, 0, 1]), for which we have a poly-
nomial algorithm since both signatures are affine. This completes the proof of the
dichotomy theorem.

6. Vanishing signature sets. In the remaining two sections we extend our
results to obtain the dichotomy result for ⊕Holant without any assumptions. In
order to formulate the dichotomy we shall need a fourth family of tractable signature
sets, which we call vanishing signature sets.

Definition 6.1. A set of signatures F is called vanishing iff the value of
⊕HolantΩ(F) is zero for every Ω. We denote the class of all vanishing signature
sets by O .

First we show some general properties of vanishing signature sets. For two sig-
natures f and g of the same arity, f + g denotes the bitwise addition in Z2, i.e.,
[f0 + g0, f1 + g1, . . .].

Lemma 6.2. Let F be a vanishing signature set. If a signature f can be realized
by a gadget using signatures in F , then F ∪{f} ∈ O . If g0 and g1 are two signatures
in F with the same arity, then F ∪ {g0 + g1} ∈ O .

Proof. The first statement is immediate. Now we prove the second, which says
that a vanishing signature set is closed under linear combination.

Let Ω = (H,F ∪ {g0 + g1}, π) be an instance of ⊕Holant(F ∪ {g0 + g1}). We
want to show that HolantΩ = 0. If the signature g0 + g1 does not appear in H , then
HolantΩ is zero since F ∈ O . Otherwise, we denote by U the set of vertices having
the signature g0 + g1. Then

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v))

=
∑
σ

( ∏
v 	∈U

fv(σ |E(v))
∏
v∈U

(g0(σ |E(v)) + g1(σ |E(v)))

)

=
∑
σ

( ∏
v 	∈U

fv(σ |E(v))

( ∑
iv∈{0,1} (for all v ∈ U)

∏
v∈U

giv(σ |E(v))

))

=
∑

iv∈{0,1} (for all v ∈ U)

∑
σ

( ∏
v 	∈U

fv(σ |E(v))
∏
v∈U

giv (σ |E(v))

)
.
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Every term in the outer summation is a Holant value on the same graph obtained
by replacing the signature in v by giv for every vertex v ∈ U . These are all instances
of ⊕Holant(F), and therefore their values are all zero since F ∈ O . As a summation
HolantΩ is also zero. This completes the proof.

In the following two subsections, we mention some simple vanishing families of
signature sets. They are not really used in the dichotomy proof, but they may give
some intuition, and some interesting phenomena can be noted from them. In the last
part of this section, we will introduce the self-vanishable signatures, which is crucial
in the proof of the general dichotomy.

6.1. Complement invariant signatures. A symmetric signature [f0, f1, . . . ,
fn] is complement invariant iff fk = fn−k for all k.

Definition 6.3. A signature f is called complement invariant iff for any input
α ∈ {0, 1}n we have f(α) = f(α).

If all the signatures involved in a Holant instance are complement invariant, then
any assignment of edges and its complement have the same value. The value at
a vertex for an assignment of edges is the same as for its complement assignment.
Hence the Holant value is always zero modulo 2.

Proposition 6.4. Let F be a set of complement invariant signatures. Then F
is vanishing.

As a side note, this family of signature sets corresponds to the additional tractable
case in Faben’s work [25] regarding parity dichotomy of the CSP framework.

6.2. Matching-based vanishing signature sets. Here we describe another
family of vanishing signature sets. In a graph where all nodes have even degree, the
parity of the number of perfect matchings is even. This can be easily shown using
the relation (1). The parity of perfect matchings is equal to that of the determinant
of its adjacency matrix. Adding up all rows of the adjacency matrix, we get a vector
composed of even numbers. Thus this matrix must be singular in the field Z2, and
its determinant is zero.

Furthermore, by using relation (2) we can also deduce the same result for graphs
composed of perfect matching nodes of even arity and partial matching nodes of odd
arity. According to the relation (2), the parity of the number of general matchings
equals Pf(A+Λ(n)) if n, the number of nodes, is even, or Pf(A++Λ(n+1)) if n is odd.
Noticing that the number of vertices of odd arities must be even, it is easy to verify
the summation of all rows in A+ Λ(n) for even n, or the first n rows in A+ + Λ(n+1)

for odd n are zero vectors in Z2. Hence, the Pfaffian, which equals the determinant,
is zero modulo 2.

By Lemma 6.2, the linear combination of these matching signatures, or signatures
that can be realized from them, also belongs to this vanishing signature family. Using
this fact, one can see that some sets of signatures, for which the Holantc problem
is ⊕P-complete, are actually vanishing, and thus the corresponding Holant problem
is tractable. For example, Holantc({[1, 0, 1, 1, 1]}) is ⊕P-complete, but the signature
[1, 0, 1, 1, 1] alone is in this vanishing family because [1, 0, 1, 1, 1] = [0, 0, 0, 1, 0] +
[1, 0, 1, 0, 1], where [0, 0, 0, 1, 0] is a perfect matching signature and [1, 0, 1, 0, 1] can be
realized via [0, 0, 0, 1, 0].

Proposition 6.5. If a signature set F is composed of perfect matching signatures
of even arities, partial matching signatures of odd arities, signatures realizable from
them, and linear combinations of all of the above, then F is a vanishing set.
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6.3. Self-vanishable signatures. In this section, we introduce a new concept
called self-vanishable signatures which plays an important role in the proof of the
general dichotomy. First, we introduce an extended version of the inner product for
two signatures of not necessarily the same arity.

Definition 6.6. Let f and g be two signatures with arities n and m (n ≥ m),
respectively. Their inner product h = 〈f, g〉 is a signature with arity n−m defined as
follows:

hα =
∑

β∈{0,1}m

fβ,αgβ,

where α ∈ {0, 1}n−m.
If f is symmetric, the final h = 〈f, g〉 is also symmetric. If both f and g are

symmetric, their inner product h = [h0, h1, . . . , hn−m] has the following form: hi =∑m
j=0 (

m
j )fj+igj for 0 ≤ i ≤ n−m. Hence, in Z2,

(4) 〈f, [1, 1]⊗2〉 = 〈f, [1, 1, 1]〉 = 〈f, [1, 0, 1]〉,

since ( 21 ) is 2. We will use this simple fact in the future.
We can also view this inner product in a combinatorial way. Given two gates with

signatures f and g, connecting m dangling edges of f to the edges of g (see Figure 10)
results in a gadget with signature 〈f, g〉.

f

g

. . . . . .

Fig. 10. The extended inner product.

Definition 6.7. A signature f is called self-vanishable of degree k iff there
exists a unique k such that 〈f, [1, 1]⊗k〉 = 0 and 〈f, [1, 1]⊗k−1〉 �= 0. We denote this
by v(f) = k. If such a k does not exist, the signature f is not self-vanishable.

We note that for the trivial signature 0 we have v(0) = 0. Also, f = [1, 1] is
self-vanishable with v(f) = 1 since 〈[1, 1], [1, 1]〉 = 0.

To be self-vanishable is a necessary condition for a signature to be a member of a
vanishing signature set, as shown in the following lemma. It also partly explains the
intuition for why we define this notion of self-vanishable and why we define it in this
way. In fact, for even k, 〈f, [1, 1]⊗k〉 = 〈f, [1, 1, 1]⊗k

2 〉 = 〈f, [1, 0, 1]⊗k
2 〉, by relation

(4), with the last signature being equivalent to connecting together pairwise the k
inputs of the original signature.

Lemma 6.8. If F contains a signature f which is not self-vanishable, then F is
not a vanishing set.

Proof. Let n be the arity of f . If n is even, we can connect all its inputs pairwise
by n/2 edges. The resulting signature is of arity 0, which means it is a single value,
and the value is 〈f, [1, 1]⊗n〉 by the argument above. It is not zero since f is not
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self-vanishable. Therefore F is not vanishing since we can construct an instance of it
whose value is not zero.

If n is odd, we can connect all its edges but one pairwise. This is a gadget with one

dangling edge, and similarly its signature is 〈f, [1, 0, 1]⊗n−1
2 〉 = 〈f, [1, 1]⊗n−1〉. This

cannot be [0, 0] or [1, 1] since f is not self-vanishable. So it must be [0, 1] or [1, 0].
In both cases, after connecting the dangling edges of two copies of such a gadget,
we get a graph whose Holant value is 1. So F is not vanishing. This completes the
proof.

The following lemma is immediate.
Lemma 6.9. Let f be self-vanishable of degree k ≥ r > 0. Then v(〈f, [1, 1]⊗r〉) =

k − r.
For a symmetric signature f = [f0, f1, . . . , fn], we call f0 the first entry of f and

call f0, f1, . . . , fk−1 the first k entries of f . It follows from the definition that for a
symmetric signature f = [f0, f1, . . . , fn], we have

〈f, [1, 1]〉 = [f0 + f1, f1 + f2, . . . , fn−1 + fn].

Hence the only symmetric signature of arity n with v(f) = 1 is [1, 1]⊗n. There
are two symmetric signatures of arity n ≥ 3 with v(f) = 2, which are the parity
signatures [1, 0, 1, 0, . . . , 0/1] and [0, 1, 0, 1, . . . , 0/1]. Using this fact and Lemma 6.9,
it is easy to verify that there are only four symmetric signatures of arity n ≥ 3 with
v(f) = 3. The first two entries are arbitrary and determine all remaining entries. They
are therefore [0, 0, 1, 1, 0, 0, 1, 1, . . .], [0, 1, 1, 0, 0, 1, 1, 0, . . .], [1, 0, 0, 1, 1, 0, 0, 1, . . .], and
[1, 1, 0, 0, 1, 1, 0, 0, . . .]. One may notice that such a signature is always periodic. In
general, we have the following lemma.

Lemma 6.10. For any k ≥ 2, there are 2k−1 symmetric signatures of arity n ≥ k
with v(f) = k, of which the first k− 1 entries are arbitrary and the remaining entries
are determined by them.

It follows from this lemma that any two symmetric signatures with the same arity
that are self-vanishable of degree k are identical if they are identical on the first k− 1
entries. As a matter of fact, any self-vanishable signature is periodic (in its symmetric
form), and the period is determined only by the degree k up to a shift. Moreover,
since the first k−1 entries are free, any possible sequence of length k−1 should appear
as a subsequence of the period (possibly after a shift), though we will not really need
this fact in the future.

Call symmetric self-vanishable signatures of degree k with first k − 1 entries all
0’s the canonical form of vanishable signatures of degree k. Later we will show that
any self-vanishable signature of degree k is a linear combination of canonical self-
vanishable signatures of degree at most k.

Regarding this canonical form, first we have the following lemma.
Lemma 6.11. If f has the canonical form for symmetric self-vanishable signa-

tures of degree k, then 〈f, [1, 1]〉 has the canonical form for symmetric self-vanishable
signatures of degree k − 1.

Proof. This lemma is immediate since the first k − 2 entries of 〈f, [1, 1]〉 are all
zero and v(〈f, [1, 1]〉) = k − 1.

Let vk be the canonical symmetric self-vanishable signature of degree k with arity
n. Then, 〈vk, [1, 1]⊗k−1〉 is self-vanishable with degree 1, which is of form (1, 1, . . . , 1).
On the other hand, the first bit of 〈vk, [1, 1]⊗k−1〉 is vkk−1 since vki = 0 for all i ≤ k−2.

From these two facts, we can conclude that vkk−1 = 1. Using this, we can show the
purpose of defining such a canonical form.
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Lemma 6.12. Every symmetric self-vanishable signature of degree k can be ex-
pressed as a sum of several symmetric self-vanishable signatures in canonical form,
whose degrees are all less than or equal to k.

Proof. Let vi be the canonical symmetric self-vanishable signature of degree i
with arity n. Let f be a symmetric self-vanishable signature of degree k, whose first
k − 1 bits are f0, f1, . . . , fk−2. Define f ′ as follows:

f ′ = vk +
k−1∑
i=1

xiv
i,

where xi satisfies
∑k−1

i=1 xiv
i
j = fj for 1 ≤ i ≤ k − 1. View this relation as a linear

equation system. The solution {xi} always exists because the coefficient matrix is

⎛
⎜⎜⎜⎝
1 1 . . . 1
0 1 . . . 0/1
...

...
...

0 0 . . . 1

⎞
⎟⎟⎟⎠

of full rank. The diagonals are all 1’s because of the fact mentioned above. Since∑k−1
i=1 xiv

i
j = fj and f ′ = vk +

∑k−1
i=1 xiv

i, it is clear that the first k − 1 entries of f ′

are exactly f0, f1, . . . , fk−2.

Then by Lemma 6.10, it is sufficient to prove that f ′ is a self-vanishable signature
of degree k. This can be verified as follows:

〈f ′, [1, 1]⊗k〉 = 〈vk, [1, 1]⊗k〉+
k−1∑
i=1

xi〈vi, [1, 1]⊗k〉 = 0

and

〈f ′, [1, 1]⊗k−1〉 = 〈vk, [1, 1]⊗k−1〉+
k−1∑
i=1

xi〈vi, [1, 1]⊗k−1〉 = 〈vk, [1, 1]⊗k−1〉 �= 0.

This completes the proof.

Lemma 6.13. The canonical symmetric self-vanishable signature of degree k ≥ 1
can be expressed as follows:

vk =
∑

S⊆[n],|S|=k−1

n⊗
i=1

u[i∈S],

where [i ∈ S] = 1 iff i ∈ S, u0 = [1, 1], and u1 = [0, 1].

Proof. We prove it by induction on k. It is obvious for k = 1. Now we assume
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that the lemma holds for k − 1. For k > 1, let f =
∑

S⊆[n],|S|=k−1⊗n
i=1u[i∈S]. Then

〈f, [1, 1]〉 =
〈 ∑

S⊆[n],|S|=k−1

n⊗
i=1

u[i∈S], [1, 1]

〉

=
∑

S⊆[n],|S|=k−1

〈
n⊗

i=1

u[i∈S], [1, 1]

〉

=
∑

S⊆[n],|S|=k−1

〈u[n∈S], [1, 1]〉 ⊗
n−1⊗
i=1

u[i∈S]

=
∑

S⊆[n],|S|=k−1,n∈S

n−1⊗
i=1

u[i∈S]

=
∑

S⊆[n−1],|S|=k−2

n−1⊗
i=1

u[i∈S].

By the induction hypothesis, the right-hand side is exactly the canonical symmetric
self-vanishable signature of degree k − 1. Hence the first k − 2 entries of 〈f, [1, 1]〉
are all zero, which means the first k − 1 entries of f are all the same. However, it is
easy to check that the first entry is zero since, if k > 1, every term in the summation
contributes zero. This completes the proof.

Definition 6.14. Let f be self-vanishable of degree k ≥ 0 with arity n. It is called
strong self-vanishable if k ≤ �n

2 �+ 1 and weak self-vanishable if �n
2 �+ 2 ≤ k ≤ n.

Theorem 6.15. Let F be a set of symmetric strong self-vanishable signatures.
Then F is a vanishing set, i.e., F ∈ O .

Proof. By Lemmas 6.2 and 6.12 it is sufficient to prove the theorem for signa-
tures in the canonical form. Each such signature we express is in the form shown
in Lemma 6.13. Each term of the decomposition is a degenerate signature, a tensor
product of two types of unary signatures [1, 1] and [0, 1]. For a strong self-vanishable
signature, we have k ≤ �n

2 � + 1, which implies that the number of [1, 1]’s is greater
than or equal to the number of [0, 1]’s.

We consider separately the two cases of strict inequality and equality.
First suppose that there is at least one signature used in the input that has the

property that k < �n
2 �+1, which means that there are strictly more [1, 1]’s than [0, 1]’s.

In this case, we can further decompose the Holant value as in Lemma 6.2 into a sum of
several (possibly exponentially many) Holant values according to the decomposition
of canonical signatures in Lemma 6.13. Then in each term, every signature involved is
degenerate. A node of degree d can be viewed as d unary signatures ([1, 1] and [0, 1]).
Therefore the whole graph is decomposed into isolated edges. For each edge, the
signatures on its two ends are either [1, 1] or [0, 1]. The Holant value is the product of
every such edge. If both ends of one edge have signature [1, 1], then the value for this
edge is zero and so is the Holant value. However, in every Holant, such a cancellation
must happen at some edge because there are strictly more [1, 1]’s than [0, 1]’s. Hence,
in total, the whole Holant is a sum of (possibly exponentially many) zeros, which is
still zero.

If there is a signature of odd arity, even when k = �n
2 �+1, then there are strictly

more [1, 1]’s than [0, 1]’s, and the argument above still works. The remaining case is
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that of all signatures having even arity and satisfying k = �n
2 � + 1. In that case we

do the same decomposition as in the previous paragraph. The numbers of [1, 1]’s and
[0, 1]’s are now exactly equal. There may exist some Holants whose value is one, and
hence the argument above does not work. In this case, we need to look further into
the structure of the decomposition

f =
∑

S⊆[n],|S|=k−1

n⊗
i=1

v[i∈S] =
∑

S⊆[n],|S|=n
2

n⊗
i=1

u[i∈S].

Notice that n is even. As in the proof of Lemma 6.2, we have

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v))

=
∑

Sv⊆[nv],|Sv|=nv
2 (for all v ∈ V )

∑
σ

∏
v∈V

n⊗
i=1

u[i∈Si](σ |E(v))

=
∑

Sv⊆[nv],|Sv|=nv
2 (for all v ∈ V )

∏
(i,j)∈E

〈
u[ti

(i,j)
∈Si], u[tj

(i,j)
∈Sj ]

〉
.

Here ti(i,j) and tj(i,j) are numbers of the edge (i, j) in the numbering of edges of nodes

i and j, respectively. The term indexed by some Sv’s in the summation contributes
one iff it satisfies the condition that for all edges (i, j) ∈ E, exactly one of the two
ti(i,j) ∈ Si and tj(i,j) ∈ Sj is true. Notice that if some Sv’s satisfy the condition, their

complement Sv’s also satisfy it. Hence, if a term indexed by some Sv’s is one, it
will be canceled out with the term indexed by the Sv’s. (Here we use the fact that
|Sv| = |Sv| = nv

2 .) This completes the proof.
As a final remark we note that the family O of vanishing signature sets has the

following difference from the previous tractable families A , M , and F ∪ {[0, 1, 0]}.
The union of two sets in O is not necessarily in O . For example, the union of the
sets {[0, 0, 1, 1, 0]}, whose member is strong self-vanishable, and {[1, 0, 1, 1, 1]}, which
is matching-based vanishing, is not vanishing.

7. Dichotomy for the whole Holant family. In this final section, we prove
our main theorem, the dichotomy for all parity Holant problems with symmetric
signatures, without assuming any freely available signatures. This improves on our
dichotomy theorem for parity Holantc problems given in section 5, which we use,
however, as our starting point. The main idea is to construct gadgets for the two
signatures [0, 1] and [1, 0]. We will first show that realizing either one of these is
enough. When one of these unary signatures is realizable, we reduce the Holant
problem to the corresponding Holantc problem and apply the Holantc dichotomy
result. However, for some signature sets it is impossible to realize [0, 1] or [1, 0]. We
show that those signature sets must be vanishing, in the sense defined in the previous
section.

We remark that the gadgets used in the proofs here are not all planar, and hence
the dichotomy for planar graphs does not follow.

Therefore we show that it is enough to realize just one of [0, 1] and [1, 0]. First
we show how to use the degenerate signature [0,0,1] (or [1,0,0]) as its base signature
[0,1] (or [1,0]).

Lemma 7.1. For any signature set F , the complexity of ⊕Holant(F ∪ {[1, 0]})
(or ⊕Holant(F ∪ {[0, 1]})) is the same as ⊕Holant(F ∪ {[1, 0, 0]}) (or ⊕Holant(F ∪
{[0, 0, 1]})).
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A1 A2 Ak

A′
1 A′

2 A′
k

G

. . .

G

G

. . .

Fig. 11. Simulating [1, 0] using [1, 0, 0] or [1, 1, 0].

Proof. First we reduce ⊕Holant(F ∪{[1, 0]}) to ⊕Holant(F ∪{[1, 0, 0]}). Given a
grid composed of signatures from F ∪ {[1, 0]}, we may replicate the grid and replace
every pair of corresponding occurrences of [1, 0] by [1, 0, 0], as depicted in Figure 11.
View the part of the grid excluding the [1, 0] signatures as a signature G. The Holant
value of the left grid is G00...0, while the Holant value of the right is (G00...0)2, which
equals G00...0 since for any x, x2 ≡ x (mod 2).

It is easy to see that ⊕Holant(F ∪ {[1, 0, 0]}) can be reduced to ⊕Holant(F ∪
{[1, 0]}) since [1, 0, 0] can be realized by two copies of [1, 0]. Thus ⊕Holant(F∪{[1, 0]})
and⊕Holant(F∪{[1, 0, 0]}) have the same complexity. Similarly, ⊕Holant(F∪{[0, 1]})
and ⊕Holant(F ∪ {[0, 0, 1]}) have the same complexity.

It may not always be possible that, having only one of [0, 1] and [1, 0] we can
construct the other. However, if the signature set is of one of the three tractable
families, then we do not need to worry. Otherwise we show that if the other unary
signature is not easy to construct, the signature set itself is hard already.

Lemma 7.2. Let F be a set of symmetric signatures. If F ⊆ A , F ⊆ M , or F ⊆
F∪{[0, 1, 0]}, then the parity problems ⊕Holant(F∪{[1, 0]}), ⊕Holant(F∪{[1, 0, 0]}),
⊕Holant(F∪{[0, 1]}), and ⊕Holant(F∪{[0, 0, 1]}) are computable in polynomial time.
Otherwise these parity problems are ⊕P-complete.

Proof. By Lemma 7.1 and symmetry, we need only prove the lemma for the case
of ⊕Holant(F ∪{[1, 0]}). If F is a subset of A , M , or F ∪{[0, 1, 0]}, then as we have
already shown, ⊕Holant(F ∪ {[1, 0]}) is computable in polynomial time.

Then we consider whether F is not in the three tractable families. If we can
simulate [0, 1] or [0, 0, 1], then by Theorem 5.3 and Lemma 7.1, ⊕Holant(F ∪{[1, 0]})
is ⊕P-complete.

Since F is not a subset of A , there exists one signature f ∈ F , which is not
degenerate and not in A . Consider the first bit of f . Assume it is 0. If the next
bit is 1, we are done, since with the help of [1, 0] we can get any front part of the
signature. Otherwise it begins with several successive 0’s and one 1. Use [1, 0] to get
this [0, 0, . . . , 1] of arity k. If k = 2, then it is [0, 0, 1] and we are done. Otherwise
connect any two of its dangling edges. The resulting signature is also a [0, 0, . . . , 1]
but of arity k − 2. After repeating this process, it will eventually become [0, 1] or
[0, 0, 1].

Next we assume the first bit is 1. If f begins with more than two successive 1’s,
we may get a signature of the form [1, 1, . . . , 1, 0] of arity k.

• If k ≥ 3, connecting any two of its dangling edges will result in a signature of
the form [0, 0, . . . , 0, 1] of arity k − 2, and we are done.

• If k = 2, connecting two copies of [1, 1, 0] will give us [0, 1, 1], and we can get
[0, 1] out of it by connecting a [1, 0].
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• Otherwise, it begins with 1, 0. Now we consider the number of successive 0’s
here:

– If there is only one 0 here, f must start with a signature of the form
[1, 0, 1, 0, . . . , 1, 0, 0] or [1, 0, 1, 0, . . . , 0, 1, 1], since it cannot be a parity
signature [1, 0, 1, 0, . . . , 0/1] ∈ A . In either case, connecting any two of
its dangling edges will result in a signature beginning with [0, 0, . . . , 0, 1].

– Otherwise f must begin with a signature of the form [1, 0, . . . , 0, 1, 0]
or [1, 0, . . . , 0, 1, 1], where the number of 0 is at least 2, since f is not
degenerate and cannot be an equality signature [1, 0, . . . , 0, 1] ∈ A . In
either case, we connect two dangling edges to reduce its arity as well
as the number of 0’s in the middle. Finally, according to the parity
of its arity, it will become one of the following four cases: [1, 0, 0, 1, 0],
[1, 0, 0, 1, 1], [1, 0, 0, 0, 1, 0], or [1, 0, 0, 0, 1, 1].
∗ For [1, 0, 0, 1, 0], connect one more pair of its dangling edges to get
[1, 1, 0], which was discussed before.

∗ For [1, 0, 0, 1, 1], put it in every vertex in the gadget shown in Fig-
ure 12, and the resulting signature is [0, 1, 0, 1, 0]. We can get [0, 1]
from this by connecting it with three [1, 0]’s.

∗ For [1, 0, 0, 0, 1, 0], put it in every vertex in the gadget shown in
Figure 13, and the resulting signature is [0, 0, 1].

∗ For [1, 0, 0, 0, 1, 1], connect its dangling edges two more times, and
we get [0, 1].

This completes our proof.

AB

C D

Fig. 12. The tetrahedron gadget.

AB

C D

Fig. 13. The gadget for [1, 0, 0, 0, 1, 0].

Using the idea of replication in Lemma 7.1, [1, 1, 0] can also be used as [1, 0].
Then formally we have the following corollary. Notice that here, to be tractable the
signature set F cannot be a subset of A , because [1, 1, 0] together with equality gate
[1, 0, . . . , 0, 1] ∈ A would lead to hardness.

Corollary 7.3. Let F be a set of symmetric signatures. If F ⊆ M or F ⊆ F ∪
{[0, 1, 0]}, then the parity problems ⊕Holant(F∪{[1, 1, 0]}) and ⊕Holant(F∪{[0, 1, 1]})
are computable in polynomial time. Otherwise they are ⊕P-complete.

Proof. We prove the corollary by reducing ⊕Holant(F ∪{[1, 0]}) to ⊕Holant(F ∪
{[1, 1, 0]}). We use the same idea as in the reduction of Lemma 7.1. Given a grid
composed of signatures from F ∪{[1, 0]}, we replicate the grid and replace every pair
of corresponding occurrences of [1, 0] by [1, 1, 0], as depicted in Figure 11. The Holant
value of the right grid is a summation of GiGj , where i and j are two index vectors and
their bitwise conjunction does not contain any 1. Thus, if i �= j and GiGj contributes
one to the summation, GjGi also contributes one to it and they vanish modulo 2. For
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i = j, there is only one contributing term (G00...0)2 = G00...0, which is the Holant
value of the left grid.

Then by Lemma 7.2, if none of (F ∪ {[1, 1, 0]}) ⊆ A , (F ∪ {[1, 1, 0]}) ⊆ M , or
(F ∪ {[1, 1, 0]}) ⊆ F ∪ {[0, 1, 0]} holds, then ⊕Holant(F ∪ {[1, 1, 0]}) is ⊕P-complete.
Noticing that [1, 1, 0] ∈ M , [1, 1, 0] ∈ F while [1, 1, 0] �∈ A , we see that the above
condition simplifies to F ⊆ M or F ⊆ F ∪ {[0, 1, 0]}.

Finally we are ready to show our main theorem.

Theorem 7.4. Let F be a set of symmetric signatures. If F ⊆ A , F ⊆ M ,
F ⊆ F ∪ {[0, 1, 0]}, or F ∈ O , then the parity problem ⊕Holant(F) is computable in
polynomial time. Otherwise it is ⊕P-complete.

Proof. If F ∈ O , then ⊕Holant(F) is trivially computable in polynomial time
since we can just return 0 for any input. The other three classes have already been
shown to be tractable.

Now we assume that F �∈ O . By definition, there is an instance G of ⊕Holant(F)
whose value is 1. We shall use this instance G as a gadget to establish the reduction.
Breaking the graph of G at one arbitrary edge, we get a gadget with two dangling
edges. For notational simplicity, we still call this gadget G. Then the value of the
original instance isG00+G11, which is one. By symmetry, we can assume that G00 = 1
and G11 = 0. If G01 = G10 = 0, then we have a gadget with signature [1, 0, 0], and
we are done by Lemma 7.2. If G01 = G10 = 1, then we have a gadget with signature
[1, 1, 0], and we are done by Corollary 7.3. The remaining cases are G01 = 1, G10 = 0
or G01 = 0, G10 = 1. These two cases are essentially the same. The only difference
is the order of the two dangling edges. So we can assume G01 = 1, G10 = 0. This G
is [1, 0]⊗ [1, 1]. By connecting two copies of this G through their first edge, we get a
gadget with signature [1, 1, 1] = [1, 1]⊗ [1, 1]. By the same argument as in Lemma 7.1,
we can use the signature [1, 1] freely.

Now if all the signatures in F are strong self-vanishable, then F ∈ O by Theo-
rem 6.15, a contradiction to our assumption. Therefore there exists a signature in F
which is weak self-vanishable or not self-vanishable.

We first assume that there exists a signature f of arity n which is not self-
vanishable. If n is odd, by connecting n − 1 dangling edges of f in pairs, we get

a unary signature 〈f, [1, 0, 1]⊗n−1
2 〉 = 〈f, [1, 1]⊗n−1〉. This is not [0, 0] or [1, 1] since f

is not self-vanishable. So it must be [0, 1] or [1, 0], and we are done by Lemma 7.2. If
n is even, connecting n − 2 dangling edges of f in pairs, we get a binary symmetric

signature 〈f, [1, 0, 1]⊗n−2
2 〉 = 〈f, [1, 1]⊗n−2〉 = [a, b, c], where a �= c if f is not self-

vanishable. So it must be one of [1, 0, 0], [0, 0, 1], [1, 1, 0], and [0, 1, 1]. Again we are
done by Lemma 7.2 or Corollary 7.3.

Henceforth we may assume that all signatures are self-vanishable and there exists
one f ∈ F , which is weak self-vanishable of degree k. We show that we can therefore
construct a gadget with signature [1, 0] or [0, 1]. This is done by connecting 2(n−k+1)
dangling edges of f pairwise with gadget G = [1, 0]⊗ [1, 1] and 2k − n − 3 dangling
edges to a copy of [1, 1] each. This gadget is valid because

2k − n− 3 ≥ 2

(⌊
n

2

⌋
+ 2

)
− n− 3 = 2

⌊n
2

⌋
− (n− 1) ≥ 0,

where the first inequality uses the fact that f is weak self-vanishable. Since n− 2(n−
k+1)− (2k−n− 3) = 1, this gadget is of arity 1, and its signature can be calculated
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as follows:

〈f,G⊗n−k+1 ⊗ [1, 1]⊗2k−n−3〉 = 〈f, [1, 1]⊗k−2 ⊗ [1, 0]⊗n−k+1〉
= 〈〈f, [1, 1]⊗k−2〉, [1, 0]⊗n−k+1〉.

The last signature is of arity 1 and hence is composed of the first two entries of
〈f, [1, 1]⊗k−2〉. By Lemma 6.9, 〈f, [1, 1]⊗k−2〉 is a self-vanishable signature of de-
gree k − (k − 2) = 2. Therefore it must be a parity signature [1, 0, 1, 0, . . . , 0/1] or
[0, 1, 0, 1, . . . , 0/1], whose first two bits are either [1, 0] or [0, 1].

This completes our proof.
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Sci. 6034, Springer-Verlag, Berlin, 2010, pp. 577–590.

[44] L. G. Valiant and V. V. Vazirani, NP is as easy as detecting unique solutions, Theoret.
Comput. Sci., 47 (1986), pp. 85–93.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 2

02
.1

20
.2

.3
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


