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Abstract

Graph coloring is arguably the most exhaustively stud-
ied problem in the area of approximate counting. It is
conjectured that there is a fully polynomial-time (ran-
domized) approximation scheme (FPTAS/FPRAS) for
counting the number of proper colorings as long as
q ≥ ∆ + 1, where q is the number of colors and ∆
is the maximum degree of the graph. The bound of
q = ∆ + 1 is the uniqueness threshold for Gibbs mea-
sure on ∆-regular infinite trees. However, the conjecture
remained open even for any fixed ∆ ≥ 3 (The cases of
∆ = 1, 2 are trivial). In this paper, we design an FP-
TAS for counting the number of proper four-colorings
on graphs with maximum degree three and thus con-
firm the conjecture in the case of ∆ = 3. This is the
first time to achieve this optimal bound of q = ∆ + 1.
Previously, the best FPRAS requires q > 11

6 ∆ and the
best deterministic FPTAS requires q > 2.581∆ + 1 for
general graphs. In the case of ∆ = 3, the best previous
result is an FPRAS for counting proper 5-colorings. We
note that there is a barrier to go beyond q = ∆ + 2
for single-site Glauber dynamics based FPRAS and we
overcome this by correlation decay approach. Moreover,
we develop a number of new techniques for the correla-
tion decay approach which can find applications in other
approximate counting problems.

1 Introduction

The problem of counting proper q-colorings has been
extensively studied in computer science and statistical
physics. It is known to be #P-hard for q ≥ 3 even on
graphs with bounded maximum degree ∆ ≥ 3 [2]. A
number of literature has been devoted to the design of
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approximation algorithms [1–5, 8–11, 17, 21]. The main
algorithmic tool used in these works is the method of
Markov chain Monte Carlo (MCMC), which is based
on the simulation of a Markov chain on all proper q-
colorings of a graph G whose stationary distribution is
the uniform distribution. Although the Markov chains
themselves are usually quite simple, it is challenging
to prove the rapid mixing property of the chains and
the interplay between the number q of colors and the
maximum degree ∆ of the graph G turns out to be a
key measure for such property to hold.

The Glauber dynamics is a natural Markov chain
to sample colorings and it converges to the uniform
distribution as long as q ≥ ∆+2. Jerrum [11] and Salas
and Sokal [18] independently showed that the Glauber
dynamics mixes rapidly if q > 2∆. The bound of 2∆ was
considered as a barrier for the analysis of the Glauber
dynamics and was even conjectured as a threshold for
the rapid mixing property to hold for a period of time.
Later, the conjecture was refuted by Bubley et al. [2]
by showing that the Glauber dynamics indeed rapidly
mixes when ∆ = 3 and q = 5. It is worth to note that
this result attains the ergodicity threshold for Glauber
dynamics (q ≥ ∆ + 2) and thus it is the best one can
achieve via this method. For general ∆, the state-of-
the-art requires that q > 11

6 ∆ [21].
All the above algorithms based on MCMC provide

randomized algorithms. Can we get deterministic ap-
proximation algorithms? A deterministic FPTAS was
obtained in [7] when q ≥ 2.8432∆ + β for some suffi-
ciently large β on triangle-free graphs. The bound was
improved to q ≥ 2.581∆ + 1 on general graphs [16].
These new deterministic FPTASes are based on the cor-
relation decay techniques.

Correlation decay approach is a relatively new ap-
proach to design approximate counting algorithm com-
paring to the MCMC method. One advantage of corre-
lation decay approach is that the resulting algorithms
are deterministic. Moreover, there are quite a few prob-
lems, for which an FPTAS based on correlation decay
approach was provided while no MCMC based FPRAS
is known. Among which, the most successful example is
the problem of computing the partition function of anti-
ferromagnetic two-spin systems [13, 14, 19], including
counting independent sets [22]. The correlation decay
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based FPTAS is beyond the best known MCMC based
FPRAS and achieves the boundary of approximabil-
ity [6, 20], which is the uniqueness condition of the sys-
tem. It is an important and challenging open question
to extend this result to anti-ferromagnetic multi-spin
systems. Coloring problem (or anti-ferromagnetic Potts
model at zero temperature in the statistical physics ter-
minology) is the most important and canonical exam-
ple for anti-ferromagnetic multi-spin systems. It was
proved that the uniqueness bound for this system on
infinite regular trees is exactly q = ∆+1 [12]. This fact
supports the conjecture that q = ∆ + 1 is the optimal
bound for approximate counting in general graphs.

1.1 Our Results Our main result is to introduce
new techniques to the correlation decay based algorithm
and provide an FPTAS all the way up to the optimal
bound of q = ∆+ 1 in the case of ∆ = 3.

Theorem 1.1. There exists an FPTAS to compute
the number of proper four-colorings on graphs with
maximum degree three.

As the first algorithm achieving the optimal bound, we
view it as a substantial step towards the optimal count-
ing algorithms for general graphs. The contribution is
three folds

• It overcomes an intrinsic barrier of MCMC
(Glauber dynamics) based algorithms. For the case
of q = ∆+ 1, the Glauber dynamics Markov chain
is not ergodic and thus its stationary distribution
is not unique. Nevertheless, we obtained FPTAS
based on correlation decay technique.

• We provide a number of new design and analysis
technique for correlation decay based algorithms,
which can be used for general graph colorings or
even other approximate counting problems.

• Our analysis is simpler than previous analysis of
MCMC algorithms in similar settings. Even when
the maximum degree ∆ = 3, it is already a
very challenging problem to analyze the MCMC
algorithms. In order to improve from q = 6 to
q = 5, [2] did a very detailed case by case analysis
and even require computer to verify the proof. We
obtain the optimal bound of q = 4.

1.2 Our Techniques The key step in all the proofs
of correlation decay analysis is to prove that a recursive
function is contractive. For most of current known
correlation decay based FPTASes for coloring problem,
the following recursion, introduced in [7], is used

PrG,L [c(v) = i] =∏d
k=1

(
1−PrGv,Lk,i

[c(vk) = i]
)∑

j∈L(v)

∏d
k=1

(
1−PrGv,Lk,j

[c(vk) = j]
) .

The notation PrG,L [c(v) = i] denotes the marginal
probability of the vertex v to be colored i in an in-
stance (G,L) where G is a graph and L is a color
list that associates each vertex a set of feasible colors.
PrGv,Lk,j

[c(vk) = j] denotes a similar marginal proba-
bility in a modified instance: Gv is the graph obtained
from G by removing v and Lk,j is obtained from L by re-
moving color j from the color list of the vertex vw where
w < k and vw is the w-th neighbor of v in some canoni-
cal order. In this recursion, PrG,L [c(v) = i] can be com-
puted from dq different variables of PrGv,Lk,j

[c(vk) = j]
with k = 1, 2, · · · , d and j = 1, 2, · · · , q. In all previ-
ous analyses, one view them as dq free and independent
variables and then bound the contraction in the worst
case. For each single variable, one use the same recur-
sion to expand to a set of dq new free and independent
variables. This yields a computation tree of degree dq.
However, the expansion of the underlying graph is of
degree d and we usually call this gap the information
loss or inefficiency of the recursion. However, these dq
variables are not completely free and independent. The
key new idea of this work is to make use of the rela-
tions among these variables to reduce redundancy and
improve the efficiency of the recursion. Here are two
key observations:

• For different colors i and j, the recursions for
PrG,L [c(v) = i] and PrG,L [c(v) = j] involve ex-
actly the same set of dq different variables.

• For k = 1, Lk,j is identical for different color j.

Using these two observations, we can further ex-
pand the q different variables PrGv,L1,j [c(v1) = j] with
j = 1, 2, · · · , q into a set of dq different variables simul-
taneously. The expansion here is d (from q variables to
dq different variables) rather than dq. In previous anal-
yses, each single variable of these q different variables
will further expand to dq free and independent variables.
The total number becomes dq2.

This can be viewed as a partial two-layer recursion:
for a subset of variables in the one layer recursion,
we use the same recursive function to further expand
them. We note that the similar information loss or
inefficiency for recursion appears in many correlation
decay based approximation counting algorithms, and it
is the main cause of the sub-optimality of the analysis.
The approach introduced here can also be applied to
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improve their analyses and the key is to observe some
relations among the redundant variables and make use
of it. In the current case, the improvement becomes
substantial when the number of variables is small.

Another crucial idea in our proof is to get better
bounds for variables PrGv,Lk,j

[c(vk) = j] and then we
only need to prove contraction in these bounded range.
This idea was used in previous analyses for counting
colorings and many other problems. However, in our
setting of q = 4 and ∆ = 3, these values could be as
large as 1 and as small as 0. These are trivial bounds for
a probability in general. Here, we use two observation
to refine the bounds.

First, we notice that bound of 1 can only be
achieved at the root of the recursion tree and for all
other variable the value is between 0 and 1

2 . The
boundaries of 0 and 1

2 are both achievable and thus
cannot be improved in general. To overcome this, we
use the following alternative argument : When the two
bounds of 0 and 1

2 are achieved, we can easily detect
it and thus compute the accurate values without error;
otherwise, we can get better bounds. In the later case,
we view the variables achieving 0 and 1

2 as parameters
rather than variables of the recursion function as we are
sure that there is no errors for them, and just prove
that the degenerated recursion function is contractive
with respect to remaining variables. This is plausible
since we have better bounds for remaining variables.

Last but not the least, as in most of the correlation
decay approach, we use a potential function to amortize
the decay rate. It remains the most important and
magic ingredient of the proof. There is no general
method to design potential function. Based on some
numerical computation, we propose a new potential
function in the paper. Comparing to the previous
potential functions for coloring problem, the main new
feature of our new function is its non-monotonicity,
which captures the property of the problem. We remark
that a potential function with a similar shape can be
used for general graph coloring problem for similar set
of recursions.

2 Preliminaries and the (New) Recursion

List coloring and Gibbs measure Although we
start with a standard graph coloring instance, where
each vertex can choose from the same set of 4 different
colors, we need to modify the color list during our
algorithms to get a list-coloring instance. Therefore we
work on list-coloring problem in general. A list-coloring
instance is specified by a graph-list pair (G,L), where
G = (V,E) is an undirected graph and L : V → 2[q]

associates each vertex v with a color list L(v) ⊆ [q]. A
proper coloring of (G,L) is an assignment c : V → [q]

such that (1) c(v) ∈ L(v) for every v ∈ V and (2) no two
ends of an edge share the same color, i.e., c(u) ̸= c(v)
for every e = (u, v) ∈ E.

The Gibbs measure is the uniform distribution over
all proper colorings of (G,L). For every vertex v ∈ V
and color i ∈ [q], we use PrG,L [c(v) = i] to denote the
marginal probability that the vertex v is colored i in the
Gibbs measure.

In the following, we use ∆ to denote the maximum
degree of the graph. If there exists an efficient algorithm
to estimate the marginal probability PrG,L [c(v) = i],
then one can construct an FPTAS to count the number
of proper colorings.

Lemma 2.1. Suppose there exists an algorithm to com-
pute a (1± ε) approximation of PrG,L [c(v) = i] for ev-
ery list-coloring instance (G,L) with G = (V,E), q = 4,
∆ = 3, |L(v)| ≥ dv + 1 for every v ∈ V , and every
i ∈ [q] in time poly(|V | , 1

ε ). Then there exists an FP-
TAS to compute the number of proper 4-colorings on
graphs with maximum degree three.

The proof Lemma 2.1 is routine, see e.g. [7].
Therefore, the remaining task is to approximate
PrG,L [c(v) = i] for instances satisfying the conditions
stated in Lemma 2.1.

Recursion Let (G,L) be an instance of list-
coloring and v ∈ V be a vertex. Let N(v) = {v1, . . . , vd}
denote the set of neighbors of v in G, where d is the de-
gree of v and let Gv be the graph obtained from G by
removing vertex v and all its incident edges. For every
k ∈ [d] and i ∈ [q], let
(2.1)

Lk,i(u) =

{
L(u) \ {i} , if u = vℓ for some ℓ < k,

L(u), otherwise

be color lists. Then the following recursion for comput-
ing PrG,L [c(v) = i] first appeared in [7].

Lemma 2.2. Assuming above notations we have

PrG,L [c(v) = i] =(2.2) ∏d
k=1

(
1−PrGv,Lk,i

[c(vk) = i]
)∑

j∈L(v)

∏d
k=1

(
1−PrGv,Lk,j

[c(vk) = j]
)

Then we can apply the same recursion to further
expand PrGv,Lk,j

[c(vk) = j] so on and so forth. It gives
a computation tree to compute the value of the root
PrG,L [c(v) = i]. The condition that q = 4, ∆ = 3,
and |L(v)| ≥ dv + 1 for every v ∈ V , holds for all
the list-coloring instances appearing in this computation
tree. In the definition of new color lists (2.1), the
list size is decreased by one only for the neighbors of
v, but the degrees of its neighbors are also decreased
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by one in the new modified graph Gv since we have
removed vertex v and all its incident edges. Therefore
the condition |L(v)| ≥ dv +1 remains satisfied for every
v ∈ V in the new instance. For every probability
PrG′,L′ [c(u) = j] in the computation tree except the
root, the degree du ≤ ∆ − 1 = 2 since we come to
this instance by removing a neighbor of u and thus
the degree is decreased by at least one. All these
observations are used in previous analyses. A more
subtle and crucial new observation is that for every
probability PrG′,L′ [c(u) = j] in the computation tree
except the root, one have |L(u)| ≥ du + 2 (which is
stronger than |L(u)| ≥ du + 1 ) since the degree of u
is decreased by one while color list for u remains in the
definition of (2.1).

We do not analyze this computation tree directly
but turn to a more efficient one by taking the rela-
tion between variables into account. In the definition
(2.1) of Lk,i , if k = 1 the new color lists remain the
same for all the remaining vertices and thus is inde-
pendent of the color i. Therefore, the |L(v1)| variables
PrGv,L1,j [c(v1) = j] are simply the marginal probabili-
ties of vertex v1 for different colors in the same instance.
Therefore, when we further expand these variables, they
involve same set of variables. We make use of this prop-
erty and further expand these variables as follows. Let
d1 be the degree of v1 in the graphGv and u1, u2, . . . , ud1

be the neighbors of vk in the graph Gv. We use Gv,v1

to denote the graph obtained from Gv by removing the
vertex v1 and all its incident edges. For every k ∈ [d1]
and i ∈ [q], we use L′

k,i to denote the color list such that

L′
k,i(u) =

{
L(u) \ {i} , if u = uℓ for some ℓ < k,

L(u), otherwise.

Applying recursion (2.2), we obtain for every j ∈ L(v1),
it holds that

PrGv,L1,j [c(v1) = j] =

(2.3)

∏d1

k=1

(
1−PrGv,v1 ,L

′
k,j

[c(uk) = j]
)

∑
l∈L(v1)

∏d1

k=1

(
1−PrGv,v1 ,L

′
k,l

[c(uk) = l]
) .

Then we substitute these into recursion (2.2) and
get a new recursion for PrG,L [c(v) = i]. We view
this new recursion as one step in the computation tree
and analyze its correlation decay property. From the
algorithmic point of view, this does not make much
difference but it do impact the analysis a lot. A similar
situation appeared in [15], where one use the same
algorithm to compute the number of independent sets

in bipartite graphs as in general graphs. However, in
that analysis, one combined two step of the recursion,
and viewed it as one single step in the computation tree,
and then analyze the contractive rate directly. Here, we
analyze the partial two-step recursion, where one only
further expand the variables for its first neighbor.

3 Algorithm

In this section, we describe our algorithm to estimate
marginals.

The main idea of our algorithm to estimate
PrG,L [c(v) = i] is to recursively apply recursions (2.2)
and (2.3) up to some depth D. For the convenience
of analysis, we distinguish between cases, depending on
the degree of v and its neighbors.

• Our algorithm terminates in one of the following
three boundary cases. (1) the color i is not in
the color list L(v), i.e., i ̸∈ L(v), in which case we
return 0; (2) the recursion depth is zero, in which
case we return 1

|L(v)| and (3) the degree of v in G is

zero, i.e. v is an isolated vertex, in which case we
return 1

|L(v)| .

• If the degree of v in G is one, the algorithm
branches into three cases according to the size of
L(v). In the case of |L(v)| = 2, we directly apply
recursion (2.2). In the case of |L(v)| = 4, note
that the sum of the marginal probabilities of colors
j ∈ L(v) on v1 in Gv is 1, the denominator of the
recursion (2.2) becomes a constant 3. For the same
reason, in the case of |L(v)| = 3, we can denote the
denominator of the recursion (2.2) by 2 + y, where
y is the marginal probability of color j ∈ [4] \ L(v)
(the absent color) on v1 in Gv.

• If the degree of v in G is two or three, we faithfully
apply recursion (2.2) and (2.3) to estimate the
marginals. In order to simplify the analysis, we use
the following convention in the case of degG (v) = 2:
Let the neighbors of v be v1, v2, then we always
assume degG (v1) ≥ degG (v2) and if degG (v1) =
degG (v2) = 1, then i ̸∈ L(v1) implies i ̸∈ L(v2).

The whole algorithm is described in Algo-
rithm 1. We use procedure P (G,L, v, i,D) to estimate
PrG,L [c(v) = i] up to depth D.

The procedures P1(G,L, v, i,D), P2(G,L, v, i,D)
and P3(G,L, v, i,D) deal with the case of degG (v) = 1,
degG (v) = 2 and degG (v) = 3 respectively.

Case degG (v) = 1: The algorithm for this case is
described in Algorithm 2.

Case degG (v) = 2: The algorithm for this case is
described in Algorithm 3.
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Algorithm 1: Estimate PrG,L [c(v) = i]

Input : Graph G; color lists L; vertex v; color
i; recursion depth D;

Output: P ∈ [0, 1]: Estimate of PrG,L [c(v) = i]
up to depth D.

Function P (G,L, v, i,D)
if i /∈ L(v) then

return 0;
end
if D ≤ 0 then

return 1
|L(v)| ;

end
if degG (v) = 0 then

return 1
|L(v)| ;

end
if degG (v) = 1 then

return P1(G,L, v, i,D);
end
if degG (v) = 2 then

return P2(G,L, v, i,D);
end
if degG (v) = 3 then

return P3(G,L, v, i,D);
end

end

Case degG (v) = 3: The algorithm for this case is
described in Algorithm 4.

Proposition 3.1. Let q = 4. Given a list-coloring
instance (G = (V,E), L) with maximum degree 3, a
vertex v ∈ V satisfying degG (v) ≤ 2 and |L(v)| ≥
degG (v) + 2, a nonnegative integer D, we have∑4

i=1 P (G,L, v, i,D) = 1.

Proof. We will prove by induction on D. When D = 0
we have

∑4
i=1 P (G,L, v, i, 0) =

∑
i∈L(v)

1
|L(v)| = 1.

Suppose the proposition holds for D − 1. To obtain
the proof for D, we will discuss on degree of v.

(1) degG (v) = 0. Clearly
∑4

i=1 P (G,L, v, i,D) =∑
i∈L(v)

1
|L(v)| = 1.

(2) degG (v) = 1. Let xi = P (Gv, L1,i, v1, i,D− 1). By
definition we have L1,i = L for all i ∈ [4]. Therefore∑4

i=1 xi =
∑4

i=1 P (Gv, L, v1, i,D − 1) = 1 by
induction hypothesis.

If |L(v)| = 4,
∑4

i=1 P (G,L, v, i,D) =
∑4

i=1
1−xi

3 =
4−1
3 = 1.

If |L(v)| = 3, assume j /∈ L(v). Then∑4
i=1 P (G,L, v, i,D) =

∑
i∈L(v)

1−xi

2+xj
=

Algorithm 2: Estimate PrG,L [c(v) = i] when
degG (v) = 1

Function P1(G,L, v, i,D)
/* the vertex v has only one neighbor

v1. */

/* If the L(v) = {i, j}. */

if |L(v)| = 2 then
x← P (Gv, L1,i, v1, i,D − 1);
y ← P (Gv, L1,j , v1, j,D − 1);

return 1−x
2−x−y ;

end
if |L(v)| = 4 then

x← P (Gv, L1,i, v1, i,D − 1);

return 1−x
3 ;

end
/* in the following case, |L(v)| = 3.

*/

if i ∈ L(v1) then
Let j be the color in the singleton set
[4] \ L(v);
x← P (Gv, L1,i, v1, i,D − 1);
y ← P (Gv, L1,j , v1, j,D − 1);

return 1−x
2+y ;

end

end

3−(1−xj)
2+xj

= 1.

(3) degG (v) = 2. In this case we have

|L(v)| = 4. So
∑4

i=1 P (G,L, v, i,D) =∑4
i=1

(1−fi)(1−yi)∑
j∈L(v)(1−fj)(1−yj)

=
∑4

i=1(1−fi)(1−yi)∑4
j=1(1−fj)(1−yj)

= 1.

Using the same proof, we can also have
∑4

j=1 fj =
1, where fj is defined in Algorithm 3.

We conclude this section with the following lemma,
whose proof is postponed to Section 7.

Lemma 3.1. Let q = 4. There exists an algorithm such
that for every list-coloring instance (G,L) with G =
(V,E) and maximum degree at most three, every vertex
v ∈ V , every coloring i ∈ L(v) and every 0 < ε < 1,
it computes a number p̂ in time poly

(
|V | , 1

ε

)
satisfying

(1− ε)p̂ ≤ PrG,L [c(v) = i] ≤ (1 + ε)p̂.

4 Bounds

In this section, we introduce upper and lower bounds for
values computed in the algorithm. These bounds will
play a crucial role in our proof.

Definition 5. We call a a triple (G = (V,E), L, v ∈
V ) (a list-coloring instance together with a vertex in the
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Algorithm 3: Estimate PrG,L [c(v) = k] when
degG (v) = 2

Function P2(G,L, v, i,D)
/* the vertex v has two neighbors

{v1, v2} with degG (v1) ≥ degG (v2);
the vertex v1 has neighbors

{u1, . . . , ud1} in the graph Gv. We

also assume that if

degG (v1) = degG (v2) = 1, then

i ̸∈ L(v1) implies i ̸∈ L(v2). */

for j ∈ L(v) do
if j ̸∈ L(v1) then

fj ← 0;
end
else

for k ∈ [d1] do
for w ∈ L(v1) do

xk,w ←
P (Gv,v1 , L

′
k,w, uk, w,D − 1);

end

end

fj ←
∏d1

k=1(1−xk,j)∑
w∈L(v1)

∏d1
k=1(1−xk,w)

;

end
yj ← P (Gv, L2,j , v2, j,D − 1);

end

return (1−fi)(1−yi)∑
j∈L(v)(1−fj)(1−yj)

;

end

graph) reachable if the following condition is satisfied:
degG (u) ≤ 3 and |L(u)| ≥ degG (u)+1 for every u ∈ V ,
degG (v) ≤ 2 and |L(v)| ≥ degG (v) + 2.

It follows from the discussion in section 2 that
for all the probability PrG,L [c(v) = i] appeared in the
computation tree except the root, (G,L, v) is reachable.

Proposition 5.1. Let (G,L, v) be reachable, i ∈ [4] be
a color , and D be a nonnegative integer. Then it holds
that 0 ≤ P (G,L, v, i,D) ≤ 1

2 .

Proof. We prove by induction on D. For base case,
P (G,L, v, i,D) will return 1

|L(v)| if D = 0, so the

proposition holds since |L(v)| ≥ 2.
Suppose the proposition holds for D−1. We discuss

on degree of v.

(1) degG (v) = 0. In this case P (G,L, v, i,D) will
return 1

|L(v)| where |L(v)| ≥ degG (v)+2 = 2, hence

we have 0 ≤ P (G,L, v, i,D) ≤ 1
2 .

(2) degG (v) = 1. Let x = P (Gv, L1,i, v1, i,D − 1) and

Algorithm 4: Estimate PrG,L [c(v) = i] when
degG (v) = 3

Function P3(G,L, v, i,D)
/* the vertex v has three neighbors

{v1, v2, v3}. */

for j ∈ L(v) do
xj ← P (Gv, L1,j , j,D);
yj ← P (Gv, L2,j , j,D);
zj ← P (Gv, L3,j , j,D);

end

return (1−xi)(1−yi)(1−zi)∑
j∈L(v)(1−xj)(1−yj)(1−zj)

;

end

y = P (Gv, L1,j , j,D−1), as defined in Algorithm 2.
Then 0 ≤ x, y ≤ 1

2 by induction hypothesis.

According to algorithm, P (G,L, v, i,D) will return
1−x
3 or 1−x

2+y , and in both cases this return value is

bounded by 1
2 given x, y ≥ 0.

(3) degG (v) = 2. Let fj , xk,w and yj be the variables
defined in Algorithm 3. By induction hypothesis
we have 0 ≤ xk,w, yj ≤ 1

2 . As for fj , we need to
further discuss on d1.

If d1 ∈ {0, 1} then fj ≤ 1
2 immediately follows, as

we have already seen in previous two cases. If d1 =

2, we also have fj =
∏2

k=1(1−xk,j)∑
w∈L(v1)

∏2
k=1(1−xk,w)

≤ (1 −

x1,j)
(
(1− x1,j) +

1
2

∑
w∈L(v1)\{j}(1− x1,w)

)−1

=
1−x1,j

(1−x1,j)+
1
2 (2+x1,j)

≤ 1
2 . Here we used the fact

that
∑

w∈L(v1)
x1,w = 1, since |L(v1)| = 4 when

d1 = 2. Similarly we have P (G,L, v, i,D) =
(1−fi)(1−yi)∑

j∈L(v)(1−fj)(1−yj)
≤ 1

2 .

Proposition 5.2. Let (G,L, v) be reachable, i ∈ L(v)
be a color , and D be a nonnegative integer. Then it
holds that

(1) if degG (v) = 2, then P (G,L, v, i,D) ≥ 1
13 ;

(2) if degG (v) ≤ 1, then P (G,L, v, i,D) ≥ 1
6 .

Proof. If degG (v) = 0 or D = 0, we have
P (G,L, v, i,D) = 1

|L(v)| ≥
1
4 . In the following, we as-

sume D ≥ 1 and degG (v) ≥ 1. We discuss on degree of
v.

(1) degG (v) = 2. It must be the case that |L(v)| =
4. Therefore we have
P (G,L, v, i,D) = (1−fi)(1−yi)

(1−fi)(1−yi)+
∑

j∈L(v)\{i}(1−fj)(1−yj)
≥
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(1− 1
2 )

2

(1− 1
2 )

2
+
∑

j∈L(v)\{i}(1−0)
=

1
4

1
4+3

= 1
13 . The upper bound

1
2 for fj and yj is guaranteed by Proposition 5.1.

(2) degG (v) = 1. If |L(v)| = 4, P (G,L, v, i,D) =
1−x
3 ≥

1− 1
2

3 = 1
6 . If |L(v)| = 3, P (G,L, v, i,D) = 1−x

2+y ≥
1− 1

2

2+ 1
2

= 1
5 > 1

6 .

Note that overall we have lower bounds 1
13 for

P (G,L, v, i,D), regardless of the degree of v. Further-
more, for fj ’s defined in Algorithm 3 we can draw a
similar conclusion: if j ∈ L(v1) then fj ≥ 1

13 .

Proposition 5.3. Let (G,L, v) be reachable and D be
a nonnegative integer. Then for every color i ∈ [4] such
that i ∈ L(u) for some neighbor u of v, we have

(1) if degG (v) = 2, then P (G,L, v, i,D) ≤ 12
25 ;

(2) if degG (v) = 1, then P (G,L, v, i,D) ≤ 6
13 .

Proof. If i /∈ L(v) then P (G,L, v, i,D) returns 0 and we
are done. If D = 0 and i ∈ L(v), then P (G,L, v, i, 0) =

1
|L(v)| ≤

1
3 since v have at least one neighbor. In the

following, we assume i ∈ L(v) and D ≥ 1.

(1) degG (v) = 2. If i ∈ L(v1), by Proposition 5.2
we know that fi ≥ 1

13 .

P (G,L, v, i,D) = (1−fi)(1−yi)
(1−fi)(1−yi)+

∑
j∈L(v)\{i}(1−fj)(1−yj)

≤
(1−fi)(1−0)

(1−fi)(1−0)+
∑

j∈L(v)\{i}(1−fj)(1− 1
2 )

=

2(1−fi)
2(1−fi)+(3−

∑
j∈L(v)\{i} fj)

= 2(1−fi)
4−fi

≤ 24
51 < 12

25 .

Here we used the fact that
∑

j∈L(v) fj = 1. On the

other hand, if i ∈ L(v2) then yi ≥ 1
13 . So

P (G,L, v, i,D) = (1−fi)(1−yi)
(1−fi)(1−yi)+

∑
j∈L(v)\{i}(1−fj)(1−yj)

≤
(1−fi)(1− 1

13 )
(1−fi)(1− 1

13 )+
∑

j∈L(v)\{i}(1−fj)(1− 1
2 )

=
(
12
13 (1− fi)

)
·(

12
13 (1− fi) +

1
2

∑
j∈L(v)\{i}(1− fj)

)−1

= 24(1−fi)
50−11fi

≤
12
25 .

(2) degG (v) = 1. Clearly i ∈ L(u) where u is the
only neighbor of v. So x = P (Gv, L, u, i,D − 1) ≥ 1

13 .
If |L(v)| = 4 then P (G,L, v, i,D) = 1−x

3 < 1
3 < 6

13 . If

|L(v)| = 3 then P (G,L, v, i,D) = 1−x
2+y ≤

1− 1
13

2 = 6
13 .

Proposition 5.4. Let (G,L, v) be reachable, i ∈ [4] be
a color. Assume degG (v) = 2, then one of the following
holds:

(1) the vertex v and its two neighbors form a triangle
in G;

(2) P(G,L, v, i,D) ≤ 13
27 for all integer D ≥ 2.

Proof. Without loss of generality we assume i = 1.
Denote by v1 and v2 the two neighbors of v in G.
We only need to consider the case when 1 /∈ L(v1)
and 1 /∈ L(v2), i.e. f1 = y1 = 0, since otherwise by
Proposition 5.3 we immediately have P (G,L, v, 1, D) ≤
12
25 < 13

27 . In this case v1 and v2 each only have up to
one neighbor in Gv, which we will denote by u1 and u2

respectively. We now continue to discuss in two cases.

(1) degGv
(v2) = 0. According to the algorithm

yj = 1
|L(v)| for j ∈ L(v2) and yj = 0 for

j /∈ L(v2). If |L(v2)| = 3 then y1 = 0 and
y2 = y3 = y4 = 1

3 . We have P (G,L, v, i,D) =
1

1+
∑

j∈L(v)\{1}(1−fj)(1−yj)
= 1

1+ 2
3 (3−

∑
j∈L(v)\{1} fj)

=

1
1+ 4

3

= 3
7 < 13

27 . If |L(v2)| = 2 we can assume

2 /∈ L(v2), thus y1 = y2 = 0 and y3 = y4 = 1
2 . We

have P (G,L, v, i,D) = 1
1+

∑
j∈L(v)\{i}(1−fj)(1−yj)

≤(
1 + (1− f2)(1− 0) + (1− f3)

(
1− 1

2

)
+

(1− f4)
(
1− 1

2

))−1
=
(
1 + 1

2 (1− f2) +

1
2

∑
j∈L(v)\{1}(1− fj)

)−1

= 1
2+ 1

2 (1−f2)
≤ 4

9 < 13
27 .

(2) degGv
(v2) = 1. Since v, v1 and v2 do

not form a triangle, L2,k(u2) = L(u2) for
all color k, thus it follows from Proposi-
tion 5.3 that for every j ∈ L2,j(u2) =
L(u2), we have yj = P (Gv, L2,j , v2, j,D −
1) ≤ 6

13 . So if L(v2) ⊆ L(u2) we have
P (G,L, v, 1, D) = 1

1+
∑

j∈L(v)\{1}(1−fj)(1−yj)
≤

1

1+(1− 6
13 )

∑
j∈L(v)\{1}(1−fj)

= 1
1+ 7

13 ·2
= 13

27 . On

the other hand, consider L(v2) ̸⊆ L(u2). Notice
that 1 /∈ L(v2) so there should be some other
color, say color 2, satisfying 2 ∈ L(v2) \ L(u2).
This also forces degGv,v2

(u2) ≤ 1. Let tkj ≜
P (Gv,v2 , L2,k, u2, j,D − 2), where Gv,v2 ≜ (Gv)v2

,
i.e., the graph obtained from G by removing v and
v2 and all edges incident to them. Since 2 /∈ L(u2)
we have tk2 = 0 for all k. We need to further dis-
tinguish between two cases.

(1) 1 ∈ L(u2). Recall that L2,k(u2) =
L(u2) so ∀k ∈ L(v), 1 ∈ L2,k(u2). Combin-
ing degGv,v2

(u2) ≤ 1, by Proposition 5.2 we have

∀k ∈ L(v), tk1 ≥ 1
6 . Specifically we have t21 ≥ 1

6 .
Now 1 is the color in singleton set [4]\L(v2), so ac-
cording to Algorithm 2, y2 = 1−t22

2+t21
≤ 6

13 . As a con-

sequence, we again have yj ≤ 6
13 for all j ∈ L(v2)

and the theorem follows.

(2) 1 /∈ L(u2). In this case u2 is isolated in
Gv,v2 with color list {3, 4}. So it is clear that
tk1 = tk2 = 0 and tk3 = tk4 = 1

2 for every k.
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Further we have y2 = 1
2 and y3 = y4 = 1

4 . Now
P (G,L, v, 1, D) = 1

1+
∑

j∈L(v)\{1}(1−fj)(1−yj)
=

1

(1+(1− 1
2 )(1−f2)+(1− 1

4 )(1−f3)+(1− 1
4 )(1−f4))

=

1
1+ 3

4

∑
j∈L(v)\{1}(1−fj)− 1

4 (1−f2)
= 4

9+f2
≤ 4

9 < 13
27 .

Combining above propositions with the degG (v) ≤
1 case, we have the following theorem for bounds on
marginal probabilities computed:

Theorem 5.1. Let (G,L, v) be reachable, i ∈ [4] be a
color. Then one of the following propositions holds:

(1) P (G,L, v, i,D) = 1
2 for all integer D ≥ 2;

(2) P (G,L, v, i,D) ≤ 13
27 for all integer D ≥ 2. Specifi-

cally P (G,L, v, i,D) ≤ 6
13 when degG (v) ≤ 1.

Furthermore, when P (G,L, v, i,D) = 1
2 for some inte-

ger D ≥ 2 the local structure of G around v falls into
one of the following three cases (see Figure 1,2 and 3):

(1) degG (v) = 0. Then j, w /∈ L(v) for two distinct
colors j, w other than i (Figure 1).

(2) degG (v) = 1. Denote by u neighbor of v. Then
i /∈ L(u) and j /∈ L(u) ∪ L(v) for some color j ̸= i
(Figure 2).

(3) degG (v) = 2. Denote by u1 and u2 two neighbors
of v. Then v, u1, u2 form a triangle, and i /∈
L(u1) ∪ L(u2) (Figure 3).

Proof. Assume w.l.o.g. i = 1, and we will assume
1 ∈ L(v), otherwise the statement is trivial. From
Proposition 5.4 we know if P (G,L, v, i,D) = 1

2 then
v and its two neighbors v1, v2 must form a triangle, and
1 /∈ L(v1)∪L(v2), as depicted in Figure 3. If this is not
the case then P (G,L, v, i,D) ≤ 13

27 . Now we focus on
those degG (v) ≤ 1 cases.

(1) degG (v) = 0. We know |L(v)| ≥ 2. If |L(v)| ≥ 3
then apparently P (G,L, v, 1, D) ≤ 1

3 < 13
27 . If

|L(v)| = 2 then P (G,L, v, i,D) = 1
2 and this is

just the case depicted in Figure 1

(2) degG (v) = 1. By Algorithm 2, if |L(v)| = 4
then P (G,L, v, 1, D) will return 1−x

3 < 13
27 . So

we focus on |L(v)| = 3. Assume 2 is the color in
singleton set [4]\L(v). According to the algorithm,
P (G,L, v, 1, D) now returns 1−x

2+y where

x = P (Gv, L1,1, u, 1, D − 1)

y = P (Gv, L1,2, u, 2, D − 1)

Notice that 1−x
2+y could reach 1

2 if and only if x =
y = 0. Otherwise at least one of x and y is

bounded by 1
6 from below, thus 1−x

2+y is bounded

by max
{

1−0
2+1/6 ,

1−1/6
2+0

}
= 6

13 .

Moreover, x = y = 0 indicates that 1 /∈ L1,1(u) and
2 /∈ L1,2(u). Recall L1,1 = L1,2 = L, it immediately
follows that degGv

(u) = 0 and 1 /∈ L(u) and
2 /∈ L(u). Together with 2 /∈ L(v) we have
2 /∈ L(u) ∪ L(v) which completes the proof (This
case is depicted in Figure 2).

Pr [ = ] = 1
2
;

Pr [ = ] = 1
2
.

Figure 1: Boundary case one

Pr [ = ] = 1
2
;

Pr [ = ] = Pr [ = ] = 1
4
.

Figure 2: Boundary case two

Pr [ = ] = 1
2
;

Pr [ = ] = Pr [ = ] = 1
6
;

Pr [ = ] = 1
6
.

Figure 3: Boundary case three

Consider a depthD that is large enough(larger than
the size of G), then clearly P (G,L, v, i,D) should return
PrG,L [c(v) = i]. Therefore we can actually draw the
same conclusions for true value PrG,L [c(v) = i]. To
make things clearer, we present the following theorem.

Theorem 5.2. Let (G,L, v) be reachable, i ∈ [4] be a
color and D ≥ 2 be an integer. Then

(1) P (G,L, v, i,D) = 0 ⇐⇒ PrG,L [c(v) = i] = 0;

(2) P (G,L, v, i,D) = 1
2 ⇐⇒ PrG,L [c(v) = i] = 1

2 ;

(3) P (G,L, v, i,D) ∈
[

1
13 ,

13
27

]
⇐⇒ PrG,L [c(v) = i] ∈

[
1
13 ,

13
27

]
.
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6 Correlation Decay

In this section, we discuss the correlation decay property
of our recursion. First we present the main theorem.

Theorem 6.1. Suppose D ≥ 3 and q = 4. Let λ =
9996
10000 be a constant, then for any list-coloring instance
(G = (V,E), L) satisfying |L(v)| ≥ degG (v)+1 for every
v ∈ V , we have

|P (G,L, v, i,D)−PrG,L [c(v) = i]| ≤ C · λD−3,

where C > 0 is some constant.

We can view the one step recursion P (G,L, v, i,D)
as a function Fi where each input of Fi is obtained by
calling a depth-(D − 1) recursion on some list-coloring
instance (Gk, Lk). Therefore Fi has 2 main variations,
depending on whether P1 or P2 is called.

It is natural to conceive of a sufficient condition
that probably looks like: the error of our estimation
decays by a constant factor in every iteration. However,
this is not generally true even for systems exhibiting
correlation decay. This issue has already been addressed
in [13,14], and in these works a potential-based analysis
is adopted. We will once more utilize this method in our
proof.

We choose φ(x) = 2 lnx−2 ln
(
1
2 − x

)
whose deriva-

tive (potential function) is Φ(x) = 1
x( 1

2−x)
and take

M ≜ 3
2 −
√
2 = sup0≤x≤ 1

2

1
(1−x)Φ(x) .

Pick a list-coloring instance (G = (V,E), L) with
maximum degree 3, a vertex v in G with neighbor(s) v1
and v2 if exist satisfying |L(v)| ≥ degG (v)+2 and a color
i. To prove Theorem 6.1, the idea is to apply induction
on D, which can be formalized by the following lemma.

Lemma 6.1. Let λ = 9996
10000 be a constant, then one of

the following statements holds:

(1) Fi(x) = Fi(x
∗) = 0;

(2) Fi(x) = Fi(x
∗) = 1

2 ;

(3) |φ(Fi(x))− φ(Fi(x
∗))|

≤ λ ·maxj:xj∈(0, 12 )

∣∣φ(xj)− φ(x∗
j )
∣∣,

where x are the return values of subroutines called by
P (G,L, v, i,D) and x∗ are true values of those called
instances.

We shall point out here if the first two cases do
not occur then φ(Fi(x)) and φ(Fi(x

∗)) are always
well-defined. This is a simple corollary of Lemma
5.2. Instead of proving this lemma, we will introduce
Lemma 6.2 which can directly imply Lemma 6.1.

To ease the notation we first define the follow-
ing. Let φ(x) = (φ(x1), φ(x2), · · · , φ(xd)) for any
d-dimensional vector x, d ∈ N, and similarly define
φ−1(x).

Lemma 6.2. Suppose d is the arity of Fi. Define the
contraction rate

α(x) =
d∑

j=1

Φ(Fi(x))

Φ(xj)

∣∣∣∣∂Fi(x)

∂xj

∣∣∣∣ .
Then for all x ∈ Dom(Fi) ⊆ [0, 1

2 ]
d, we have α(x) ≤ λ

where λ = 9996
10000 .

Before delving into the proof, we first show that
how to prove Lemma 6.1 by Lemma 6.2.

Proof. [Proof of Lemma 6.1] Let I be the index set of
variables of Fi. Let x0 =

{
xi

∣∣ i ∈ I, xi ∈
{
0, 1

2

}}
and

x1 =
{
xi

∣∣ i ∈ I, xi ∈ (0, 1
2 )
}
. Let I0 and I1 be the

corresponding index set of x0 and x1. Define x∗
0 and x∗

1

similarly.
Let u1 = φ(x1), u

∗
1 = φ(x∗

1), and since φ is strictly
increasing we have x1 = φ−1(u1) and x∗

1 = φ−1(u∗
1).

Notice u∗
1 is well-defined because we know xi ∈ (0, 1

2 ) if
and only if x∗

i ∈ (0, 1
2 ) by Lemma 5.2. In other words,

x0 and x1 shares the same index set with x∗
0 and x∗

1,
respectively.

Introduce

g(t) ≜ φ(Fi(x0, φ
−1(tu1 + (1− t)u∗

1))

so that φ(Fi(x)) − φ(Fi(x
∗)) = φ(Fi(x0,x1)) −

φ(Fi(x
∗
0,x

∗
1)) = g(1) − g(0). By Mean Value Theorem

there exists t̃ ∈ (0, 1) such that

g(1)− g(0)

1− 0
= g′(t̃).

For convenience we denote ũ1 = t̃u1 + (1 − t̃)u∗
1

and x̃1 = φ−1(ũ1). Clearly each component of x̃1 lies
between 0 and 1

2 since φ is a monotone function. Simple
derivative calculation yields

|φ(Fi(x))− φ(Fi(x
∗))|

=

∣∣∣∣∣∣
∑
j∈I1

Φ(Fi(x0, x̃1))

Φ(x̃j)

∂Fi(x0, x̃1)

∂xj
· (uj − u∗

j )

∣∣∣∣∣∣
≤
∑
j∈I1

Φ(Fi(x0, x̃1))

Φ(x̃j)

∣∣∣∣∂Fi(x0, x̃1)

∂xj

∣∣∣∣ · ∣∣uj − u∗
j

∣∣
≤

∑
j∈I1

Φ(Fi(x0, x̃1))

Φ(x̃j)

∣∣∣∣∂Fi(x0, x̃1)

∂xj

∣∣∣∣
 ·max

j∈I1

∣∣uj − u∗
j

∣∣ .
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Finally notice that if xj ∈
{
0, 1

2

}
then 1

Φ(xj)
= 0 and

∑
j∈I1

Φ(Fi(x0, x̃1))

Φ(x̃j)

∣∣∣∣∂Fi(x0, x̃1)

∂xj

∣∣∣∣
=
∑
j∈I0

Φ(Fi(x0, x̃1))

Φ(xj)

∣∣∣∣∂Fi(x0, x̃1)

∂xj

∣∣∣∣
+
∑
j∈I1

Φ(Fi(x0, x̃1))

Φ(x̃j)

∣∣∣∣∂Fi(x0, x̃1)

∂xj

∣∣∣∣
≤ sup

x∈[0, 12 ]
d

α(x) ≤ λ.

This completes the proof.

We make some remarks. Here Fi is just a general
concept representing the function of our algorithm.
We use different recursions to compute the marginal
probability as the degrees of v and its neighbors changes.
As a consequence, the specific form, including arity
of Fi has several variations, and depends on actual
situations. Moreover, in our analysis we will frequently
refine the domain of Fi because in some cases both true
value and computed value never exceed a certain bound.
Nevertheless, we can always obtain the expression of
this contraction rate α(x), and it turns out that we can
bound this rate for all variations of Fi.

The rest of this section is dedicated to prove Lemma
6.2. Our proof is based on the discussion on the degree
of v. Thanks to the symmetry between colors, we will
only need to prove for i = 1. The proofs for other colors
are identical.

6.1 degG (v) = 1 Denote by v1 the only neighbor of
v. In this case F1 has three variations.

F1 =


1−x
3 |L(v)| = 4

1−x
2+y 1 ∈ L(v), j /∈ L(v)

0 1 /∈ L(v)

where x = P (Gv, L1,1, v1, 1, D − 1) and y =
P (Gv, L1,j , v1, j,D − 1). We shall prove Lemma 6.1 for
the first two variations since the last one is trivial.

1. |L(v)| = 4. The contraction rate writes as

α(x) =
Φ(F1(x))

Φ(x)

∣∣∣∣∂F1(x)

∂x

∣∣∣∣ .
Moreover we have the following upper bound
Φ(F1(x))

Φ(x)

∣∣∣∂F1(x)
∂x

∣∣∣ = 1
3 ·

x( 1
2−x)

1−x
3 ( 1

2−
1−x
3 )

= 3x(1−2x)
(1−x)(1+2x) ≤

3x
1+2x ≤

3
4 < 1.

2. 1 ∈ L(v), j /∈ L(v). In this case F1 is a binary
function. The contraction rate writes as

α(x, y) =
Φ(F1(x, y))

Φ(x)

∣∣∣∣∂F1(x, y)

∂x

∣∣∣∣
+

Φ(F1(x, y))

Φ(y)

∣∣∣∣∂F1(x, y)

∂y

∣∣∣∣ .
We further discuss on three cases.

(a) 1 /∈ L(v1) and j /∈ L(v1). In this case x and y
are accurately computed, hence no error occurs in
our computation.

(b) 1 /∈ L(v1) and j ∈ L(v1). Denote by d1 degree

of v1 in graph Gv. Then y =
∏d1

k=1(1−zjk)∑
l∈L(v1)

∏d1
k=1(1−zlk)

≥

(1− 1
2 )

2

(1− 1
2 )

2
+(1−0)×3

= 1
13 . This lower bound also holds

for y∗.

If 1 /∈ L(v1), then x = x∗ = 0. Let F0 =
F1(0, ·) be the function obtained by fixing x = 0 in
F1. The contraction rate of F0 is

α(y) =
Φ(F0(y))

Φ(y)

∣∣∣∣∂F0(y)

∂y

∣∣∣∣
=

y
(
1
2 − y

)
1

2+y

(
1
2 −

1
2+y

) · 1

(2 + y)2

= (1− 2y) ≤ 11

13
.

(c) 1 ∈ L(v1). Similarly we have x, x∗ ≥ 1
13 . Then

α(x, y) =
Φ(F1(x, y))

Φ(x)

∣∣∣∣∂F1(x, y)

∂x

∣∣∣∣
+

Φ(F1(x, y))

Φ(y)

∣∣∣∣∂F1(x, y)

∂y

∣∣∣∣
=

1

1−x
2+y

(
1
2 −

1−x
2+y

)
·

(
x
(
1
2 − x

)
2 + y

+
(1− x)y

(
1
2 − y

)
(2 + y)2

)

=
x
(
1
2 − x

)
(2 + y) + y

(
1
2 − y

)
(1− x)

(1− x)
(
x+ y

2

) .

We show that
x( 1

2−x)(2+y)+y( 1
2−y)(1−x)

(1−x)(x+ y
2 )

≤ λ for

λ = 9996
10000 , which is equivalent to

x

(
1

2
− x

)
(2 + y) + y

(
1

2
− y

)
(1− x)(6.4)

≤ λ · (1− x)
(
x+

y

2

)
.
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Inequality (6.4) can be simplified to
(6.5)

(1−x)y2+
(
x2 − λ

2
x− 1− λ

2

)
y+x2−(1−λ)x ≥ 0.

Using the fact that 1
13 ≤ x ≤ 1

2 , we know the

LHS of (6.5) is minimized at y = 2x2−λx−1+λ
4x−4 .

Plugging this into (6.5) and it can be simplified
to 1− 2λ+ λ2 + (16− 14λ− 2λ2)x+ (−52+ 36λ+
λ2)x2 + (32 − 20λ)x3 + 4x4 ≤ 0, which holds for
1
13 ≤ x ≤ 1

2 .

To summarize the analysis in Section 6.1, we have
α(x) ≤ λ = 9996

10000 .

6.2 degG (v) = 2 Denote by v1, v2 two neighbors of v.
Let di = degGv

(vi) and we have d1 ≥ d2. In this case

Fi = Fi(x,y) =
(1− fi)(1− yi)∑

j∈L(v)(1− fj)(1− yj)

where

fi =


∏d1

k=1(1−xk,i)∑
j∈L(v1)

∏d1
k=1(1−xk,j)

i ∈ L(v1)

0 i /∈ L(v1).

6.2.1 d1 = 2 We first note that for i, j ∈ L(v1), fi/fj
is bounded by constants.

Proposition 6.1. If d1 = 1 or 2 and for every 1 ≤
k ≤ d1, j ∈ L(v1), we have 0 ≤ xk,j ≤ 1

2 , then for every
i, j ∈ L(v1), it holds that 1

4 ≤ fi/fj ≤ 4 and fi ≥ 1
13 .

Proof. For every i, j ∈ L(v1), we have fi
fj

=∏d1
k=1(1−xk,i)∏d1
k=1(1−xk,j)

. Then the bound for the ratio follows from

d1 = 1, 2 and 0 ≤ xk,j ≤ 1
2 for every 1 ≤ k ≤ d1,

j ∈ L(v1).
To see the lower bound for fi, we note that |L(v)| ≤

4 and thus 1 =
∑

j∈L(v) fj ≤ fi + 4
∑

j∈L(v)\{i} fi ≤
13fi.

To prove Lemma 6.2 it suffices to bound the con-
traction rate

α(x,y) =
2∑

i=1

∑
j∈L(v1)

Φ(F1)

Φ(xji)

∣∣∣∣∂F1(x)

∂xji

∣∣∣∣
+

4∑
j=1

Φ(F1)

Φ(yj)

∣∣∣∣∂F1(y)

∂yj

∣∣∣∣ .

Simple calculation yields

2∑
i=1

∑
j∈L(v1)

Φ(F1)

Φ(xji)

∣∣∣∣ ∂F1

∂xji

∣∣∣∣
=

2∑
i=1

(
Φ(F1)

Φ(x1i)
· F1f1
1− x1i

·
4∑

k=2

Fk

1− fk
+

∑
j∈L(v1)\{1}

Φ(F1)

Φ(xji)
· F1fj
1− xji

∣∣∣∣∣∣∣
1

1− f1
−

4∑
k=1
k ̸=j

Fk

1− fk

∣∣∣∣∣∣∣


≤
2∑

i=1

(
M · Φ(F1)F1

(
f1

4∑
k=2

Fk

1− fk
+

∑
j∈L(v1)\{1}

fj

∣∣∣∣∣∣∣
1

1− f1
−

4∑
k=1
k ̸=j

Fk

1− fk

∣∣∣∣∣∣∣

 ≜ 2 · P1(f ,y),

4∑
j=1

Φ(F1)

Φ(yj)

∣∣∣∣∂F1

∂yj

∣∣∣∣
=

Φ(F1)

Φ(y1)
· F1(1− F1)

1− y1
+

4∑
j=2

Φ(F1)

Φ(yj)
· F1Fj

1− yj
≜ P2(f ,y).

Now we only need to bound

α(x,y) = 2P1(f ,y) + P2(f ,y).

Notice that after substituting M for 1
(1−x)Φ(x) we

can ignore x and treat P1 and P2 as functions of f and
y, with some constraints on f as we will see soon.

Discussion on the absolute value. Let Dj ≜
1

1−f1
−
∑4

k=1
k ̸=j

Fk

1−fk
for j = 2, 3, 4. We show that at

least two of these Dj ’s are nonnegative. Assume for the
contraction that D2, D3 < 0, then we obtain

1

1− f1
− F1

1− f1
− F3

1− f3
− F4

1− f4
< 0

1

1− f1
− F1

1− f1
− F2

1− f2
− F4

1− f4
< 0.

This is equivalent to

(1− f2)(1− y2) + (f1 − f3)(1− y3)(6.6)

+ (f1 − f4)(1− y4) < 0

(1− f3)(1− y3) + (f1 − f2)(1− y2)(6.7)

+ (f1 − f4)(1− y4) < 0

(6.6)+(6.7) gives

(1 + f1 − 2f3)(1− y3) + (1 + f1 − 2f2)(1− y2)

+ 2(f1 − f4)(1− y4) < 0
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Since 1+f1−2f3, 1+f1−2f2 > 0 and 0 < y2, y3, y4 <
1
2 , it holds that 3f1 + 1− f2 − f3 − 2f4 < 0.

Since d1 = 2 we have |L(v)| = 4 so Proposition 6.1
holds for all pairs of fi, fj , 1 ≤ i < j ≤ 4. Applying
f1 + f2 + f3 + f4 = 1, we obtain 4f1 < f4, which is a
contradiction.

Therefore, we have either all Dj for j = 2, 3, 4 are
nonnegative or at most one of it is negative. Assume
D2 is negative, i.e.,

(1−f2)(1−y2)+(f1−f3)(1−y3)+(f1−f4)(1−y4) < 0.

Since (1 − f2)(1 − y2) ≥ 0, we have either f1 < f3 or
f1 < f4 or both. W.l.o.g. assume f1 < f3, now we
distinguish between two cases:

• (f1 < f4) In this case, we can let y2 = 1
2 and

y3 = y4 = 0, this gives

1− f2 + 2(f1 − f3) + 2(f1 − f4) < 0.

Using the identity f1 + f2 + f3 + f4 = 1, we obtain

6f1 + f2 − 1 < 0.

• (f1 ≥ f4) In this case, we can let y2 = 1
2 , y3 = 0

and f4 = f1, this gives

1− f2 + 2(f1 − f3) < 0.

Using f3 = 1−f1−f2−f4 ≤ 7
8 −f1−f2, we obtain

4f1 + f2 −
3

4
< 0.

Now we can continue our analysis of α(x,y).
Case 1: All Dj are nonnegative for j = 2, 3, 4.

Introduce the following function of w and f

Gξ(w, f) =
1− f

Φ(1− w
1−f )

+ 4Mξ · w

1− f

where ξ ∈ [0, 1] is some constant parameter. The
following two lemmas are used to symmetrize α(x,y).

Lemma 6.3. G0(w, f) is concave when f ∈ [0, 1
2 ] and

1−f
2 ≤ w ≤ 1 − f , hence for all wi, fi satisfying

fi ∈ [0, 1
2 ] and 1−fi

2 ≤ wi ≤ 1 − fi, i = 1, 2, · · · , n,
we have

G0(w1, f1) +G0(w2, f2) + · · ·+G0(wn, fn)

n

≤ G0

(
w1 + w2 + · · ·+ wn

n
,
f1 + f2 + · · ·+ fn

n

)
.

Proof. The Hessian ofG0(w, f) is

[
− 2

1−f − 2w
(1−f)2

− 2w
(1−f)2 − 2w2

(1−f)3

]
,

which is negative semi-definite when f ∈ [0, 1
2 ].

Lemma 6.4. For all w1, w2, w3 ∈ [0, 1
2 ] and f1, f2, f3 ∈

[ 1
13 ,

1
2 ] such that 1−fi

2 ≤ wi ≤ 1− fi, i = 1, 2, 3, we have

1

2
(Gξ(w1, f1) +Gξ(w2, f2))

≤ κ ·Gξ

(
w1 + w2

2
,
f1 + f2

2

)
;

1

3
(Gξ(w1, f1) +Gξ(w2, f2) +Gξ(w3, f3))

≤ κ ·Gξ

(
w1 + w2 + w3

3
,
f1 + f2 + f3

3

)
,

holds for any ξ ∈ [0, 1], where κ = 1038
1000 .

Proof. First we shall point out that if the lemma holds
for ξ = 1, then it should hold for any other 0 ≤ ξ < 1.

Suppose the lemma holds for ξ = 1. That is

1

2
(G1(w1, f1) +G1(w2, f2))

≤ κ ·G1

(
w1 + w2

2
,
f1 + f2

2

)
.

Rewrite Gξ(w, f) = (1−ξ)G0(w, f)+ξG1(w, f). Recall
that G0 is concave, thus

1

2
(Gξ(w1, f1) +Gξ(w2, f2))

≤ (1− ξ)G0

(
w1 + w2

2
,
f1 + f2

2

)
+ ξκ ·G1

(
w1 + w2

2
,
f1 + f2

2

)
≤ (1− ξ)κ ·G0

(
w1 + w2

2
,
f1 + f2

2

)
+ ξκ ·G1

(
w1 + w2

2
,
f1 + f2

2

)
= κ ·Gξ

(
w1 + w2

2
,
f1 + f2

2

)
.

The same argument works for the 3-variable case. So it
remains to prove the ξ = 1 case.

It can be rigorously proved by Mathematica (the
codes are in Section 8) that for all w1, w2, w3 ∈ [0, 1

2 ]

and f1, f2, f3 ∈ [ 1
13 ,

1
2 ] such that 1−fi

2 ≤ wi ≤ 1− fi, i =
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1, 2, 3, we have

1

2
(G1(w1, f1) +G1(w2, f2))

≤ κ1 ·G1

(
w1 + w2

2
,
f1 + f2

2

)
;

1

3
(G1(w1, f1) + 2G1(w2, f2))

≤ κ2 ·G1

(
w1 + 2w2

3
,
f1 + 2f2

3

)
.

Here κ1 = 10195
10000 , κ2 = 10181

10000 and κ1κ2 ≤ κ. As a
consequence,

1

3
(G1(w1, f1) +G1(w2, f2) +G1(w3, f3)

=
1

2

(
1

3
(2G1(w1, f1) +G1(w2, f2))

+
1

3
(G1(w2, f2) + 2G1(w3, f3))

)
≤ κ2 ·

1

2

(
G1

(
2w1 + w2

3
,
2f1 + f2

3

)
+G1

(
w2 + 2w3

3
+

f2 + 2f3
3

))
≤ κ1κ2 ·G1

(
1

2

(
2w1 + w2

3
+

w2 + 2w3

3

)
,

1

2

(
2f1 + f2

3
+

f2 + 2f3
3

))
≤ κ ·G1

(
w1 + w2 + w3

3
,
f1 + f2 + f3

3

)
.

Recall that fj = 0 for j /∈ L(v1), and

∑
j∈L(v1)\{1}

fj

 1

1− f1
−

4∑
k=1
k ̸=j

Fk

1− fk


= 1−

4∑
j=2

fj

4∑
k=1
k ̸=j

Fk

1− fk

= 1−
4∑

j=1

fj

4∑
k=1
k ̸=j

Fk

1− fk
+ f1

4∑
k=2

Fk

1− fk

= 1−
4∑

k=1

Fk

1− fk

4∑
j=1
j ̸=k

fj + f1

4∑
k=2

Fk

1− fk

= f1

4∑
j=2

Fj

1− fj
.

So we have

α = Φ(F1)F1

(
1− F1

(1− y1)Φ(y1)

+

4∑
j=2

Fj

(1− yj)Φ(yj)
+ 4Mf1

4∑
j=2

Fj

1− fj

 .

Define symmetric forms of Fk as follows.

F̂k(f1, f2, y1, y2) =

(1− fk)(1− yk)

(1− f1)(1− y1) + 3(1− f2)(1− y2)
, k = 1, 2.

Then we can define the symmetric form of α

α̂(f1, f2, y1, y2) = Φ(F̂1)F̂1·(
1− F̂1

(1− y1)Φ(y1)
+

3F̂2

(1− y2)Φ(y2)
+ 12Mf1 ·

F̂2

1− f2

)
.

Lemma 6.5. For all f ,y ∈ [0, 1
2 ]

4 such that 1
13 ≤

f1, f2, f3, f4 ≤ 1
2 and f1 + f2 + f3 + f4 = 1, there exists

f̂2, ŷ2 ∈ [0, 1
2 ] such that f1 + 3f̂2 = 1 and

α(f ,y) ≤ κ · α̂(f1, f̂2, y1, ŷ2)

where κ = 1038
1000 .

Proof. Let wk = (1 − fk)(1 − yk), k = 2, 3, 4, A(f ,y) =∑4
j=1(1 − fj)(1 − yj) be the denominator of Fk, and

Â(f1, f2, y1, y2) = (1− f1)(1− y1)+3(1− f2)(1− y2) be
the denominator of F̂k. Then

α = Φ(F1)F1

(
1− F1

(1− y1)Φ(y1)

+
1

A

4∑
j=2

1− fj
Φ(1− wj

1−fj
)
+ 4Mf1 ·

wj

1− fj


= Φ(F1)F1

 1− F1

(1− y1)Φ(y1)
+

1

A

4∑
j=2

Gf1(wj , fj)

 .

Take ŵ2 and f̂2 such that 3ŵ2 = w1 + w2 + w3,
3f̂2 = f1 + f2 + f3, and take ŷ2 = 1 − ŵ2

1−f̂2
. Therefore

f1 + 3f̂2 = f1 + f2 + f3 + f4 = 1 and

A(f ,y) = Â(f1, f̂2, y1, ŷ2)

F1(f ,y) = F̂1(f1, f̂2, y1, ŷ2).
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Furthermore, wj and yj satisfy the condition of Lemma
6.4 hence

α ≤ Φ(F1)F1

(
1− F1

(1− y1)Φ(y1)
+ 3κ · Gf1(ŵ2, f̂2)

A

)

= Φ(F̂1)F̂1

(
1− F̂1

(1− y1)Φ(y1)

+3κ ·

(
F̂2

(1− ŷ2)Φ(ŷ2)
+ 4Mf1 ·

F̂2

1− f̂2

))

≤ κ · Φ(F̂1)F̂1

(
1− F̂1

(1− y1)Φ(y1)

+
3F̂2

(1− ŷ2)Φ(ŷ2)
+ 12Mf1 ·

F̂2

1− f̂2

)
= κ · α̂(f1, f̂2, y1, ŷ2).

Lemma 6.6. For all f1, f2, y1, y2 ∈ [0, 1
2 ] such that 1

13 ≤
f1 ≤ 1

2 and f1 + 3f2 = 1, we have

α̂(f1, f2, y1, y2) ≤
963

1000
.

Proof. The lemma can be rigorously proved by Mathe-
matica. The codes are in Section 8.

Theorem 5.2 and Proposition 6.1 provide the condi-
tion for Theorem 6.5, and combining Theorem 6.6 gives

α(f ,y) ≤ κ · α̂(f1, f̂2, y1, ŷ2) ≤
1038

1000
· 963
1000

<
9996

10000
.

Case 2: Dj is negative for some j. Without
loss of generality, we can assume j = 2, i.e., 1

1−f1
−∑4

k=1
k ̸=2

Fk

1−fk
< 0. Therefore,

4∑
j=2

fj

∣∣∣∣∣∣∣
1

1− f1
−

4∑
k=1
k ̸=j

Fk

1− fk

∣∣∣∣∣∣∣
= f1

4∑
j=2

Fj

1− fj
− 2f2

 1

1− f1
−

4∑
k=1
k ̸=2

Fk

1− fk

 .

So we have

α = Φ(F1)F1

 1− F1

(1− y1)Φ(y1)
+

4∑
j=2

Fj

(1− yj)Φ(yj)

+4Mf1

4∑
j=2

Fj

1− fj
− 4Mf2

 1

1− f1
−

4∑
k=1
k ̸=2

Fk

1− fk




which is a function of f ,y ∈ [0, 1]4 where f1 + f2 + f3 +
f4 = 1.

Similarly, by exploiting the symmetry of f3 and f4,
we define the symmetric form of F1.

F̂1(f1, f2, f3, y1, y2, y3) =
(1− f1)(1− y1)

Â

where

Â = (1− f1)(1− y1) + (1− f2)(1− y2) + 2(1− f3)(1− y3).

Then we can define the symmetric form of α

α̂ =
Φ(F̂1)F̂1

Â

(
Â(1− F̂1)P1 + P2 + P3

)
where

P1 =
1

(1− y1)Φ(y1)
− 4Mf2

1− f1
,

P2 =
1− f2
Φ(y2)

+ 4Mf1(1− y2),

P3 =
2(1− f3)

Φ(y3)
+ 8M(f1 + f2)(1− y3).

So α̂ is a function of f ,y ∈ [0, 1
2 ]

3.

Lemma 6.7. For all f ,y ∈ [0, 1
2 ]

4 such that 1
13 ≤

f3, f4 ≤ 1
2 and f1 + f2 + f3 + f4 = 1, there exists

f̂3, ŷ3 ∈ [0, 1
2 ] such that f1 + f2 + 2f̂3 = 1 and

α(f ,y) ≤ κ · α̂(f1, f2, f̂3, y1, y2, ŷ3)

where κ = 1038
1000 .

Proof. Let wj = (1−fj)(1−yj) for j = 3, 4, and denote

A = A(w1, w2, w3, w4) =
∑4

j=1 wj be the denominator
of Fk. Let t = f1 + f2, then

α =
Φ(F1)F1

A

(
A(1− F1)P1 + P2+

4∑
j=3

1− fj
Φ(yj)

+ 4M(f1 + f2)(1− yj)

)

=
Φ(F1)F1

A

(
A(1− F1)P1 + P2

+
4∑

j=3

1− fj
Φ(1− wj

1−fj
)
+ 4M(f1 + f2) ·

wj

1− fj

)

=
Φ(F1)F1

A

A(1− F1)P1 + P2 +

4∑
j=3

Gt(wj , fj)

 .
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Take ŵ3 and f̂3 such that 2ŵ3 = w3+w4, 2f̂3 = f3+f4,
and take ŷ3 = 1− ŵ3

1−f̂3
. Then we have f1 + f2 + 2f̂3 =

f1+f2+f3+f4 = 1. Let Â(w1, w2, w3) = w1+w2+2w3,
then clearly A(w1, w2, w3, w4) = Â(w1, w2, ŵ3). Since
f1 + f2 ∈ [0, 1] by Lemma 6.4 we have

α(f ,y) ≤ Φ(F1)F1

Â

(
Â(1− F̂1)P1 + P2 + 2Gt(ŵ3, f̂3)

)
=

Φ(F̂1)F̂1

Â

(
Â(1− F̂1)P1 + P2

+ 2κ ·

(
1− f̂3
Φ(ŷ3)

+ 4M(f1 + f2)(1− ŷ3)

))

≤ κ · Φ(F̂1)F̂1

Â

(
Â(1− F̂1)P1 + P2

+
2(1− f̂3)

Φ(ŷ3)
+ 8M(f1 + f2)(1− ŷ3)

)
= κ · α̂(f1, f2, f̂3, y1, y2, ŷ3).

Lemma 6.8. For all f1, f2, f3, y1, y2, y3 ∈ [0, 1
2 ] satisfy-

ing

f1 + f2 + 2f3 = 1,

6f1 + f2 − 1 < 0,

4f1 + f2 −
3

4
< 0,

and
1

13
≤ f1 ≤

1

2
, 0 ≤ f2, f3 ≤

1

2
,

we have

α̂(f1, f2, f3, y1, y2, y3) ≤
9163

10000
.

Proof. Recall that

α̂ =
Φ(F̂1)F̂1

Â

(
Â(1− F̂1)P1 + P2 + P3

)
where

P1 =
1

(1− y1)Φ(y1)
− 4Mf2

1− f1
,

P2 =
1− f2
Φ(y2)

+ 4Mf1(1− y2),

P3 =
2(1− f3)

Φ(y3)
+ 8M(f1 + f2)(1− y3)

=
1 + f1 + f2

Φ(y3)
+ 8M(f1 + f2)(1− y3).

Denote

A1 = Â(1− F̂1) = (1− f2)(1− y2) + 2(1− f3)(1− y3).

So

α̂ =
2 (A1P1 + P2 + P3)

A1 − (1− y1)(1− f1)
.

We substitute P1 for P ′
1 = 1

(1−y1)Φ(y1)
− 4Mf2

1−1/13 ≥ P1

and obtain an upper bound

α̂ ≤ 2(A1P
′
1 + P2 + P3)

A1 − (1− y1)(1− f1)
.

Notice now both numerator and denominator are linear
functions of f1. Therefore it reaches the maximum value
when f1 is at its boundary. The next step is to let f1
take its boundary values and simplify the formula.

1. f1 = 1
6 (1− f2).

α1 =
2(A1P

′
1 + P ′

2 + P ′
3)

A1 − (1− y1)(1− 1
6 (1− f2))

where

P ′
2 =

1− f2
Φ(y2)

+
2

3
M(1− f2)(1− y2),

P ′
3 =

7 + 5f2
6Φ(y3)

+
4

3
M(5f2 + 1)(1− y3).

It can be rigorously proved by Mathematica that
α1 ≤ 9138

10000 . The codes are in Section 8.

2. f1 = 1
4

(
3
4 − f2

)
.

α2 =
2(A1P

′
1 + P ′

2 + P ′
3)

A1 − (1− y1)(1− 1
4 (

3
4 − f2))

where

P ′
2 =

1− f2
Φ(y2)

+M

(
3

4
− f2

)
(1− y2),

P ′
3 =

19 + 12f2
16Φ(y3)

+ 6M

(
f2 +

1

4

)
(1− y3).

It can be rigorously proved by Mathematica that
α1 ≤ 9163

10000 . The codes are in Section 8.

3. f1 = 1
13 .

α3 =
2(A1P

′
1 + P ′

2 + P ′
3)

A1 − (1− y1)(1− 1
13 )

where

P ′
2 =

1− f2
Φ(y2)

+
4

13
M(1− y2),

P ′
3 =

14 + f2
13Φ(y3)

+ 8M

(
f2 +

1

13

)
(1− y3).

It can be rigorously proved by Mathematica that
α3 ≤ 9102

10000 . The codes are in Section 8.
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To conclude we have

α̂ ≤ max

{
9138

10000
,
9163

10000
,
9102

10000

}
=

9163

10000
.

The discussion of absolute values provides the
condition for Lemma 6.7, and combining Lemma 6.8
gives

α(f ,y) ≤ κ · α̂(f1, f2, f̂3, y1, y2, ŷ3)

≤ 1038

1000
· 9163
10000

<
9512

10000
.

To summarize the analysis in section 6.2.1, we have

α(f ,y) ≤ max

{
9512

10000
,
9996

10000

}
=

9996

10000
.

6.2.2 d1 = 1 When d1 = 1 we need to bound
α(x,y) = P1(f ,y)+P2(f ,y). Furthermore, if 1 ∈ L(v1)
then we still have 1

13 ≤ f1 ≤ 1
2 , 0 ≤ f2, f3, f4 ≤ 1

2 . In
this case, the proof in Section 6.2.1 can all go through
once we obtain the symmetric form of α by the following
lemma. This is a modified version of Lemma 6.4 that
can fit the situation of d1 = 1.

Lemma 6.9. For all w1, w2, w3 ∈ [0, 1
2 ]

and f1, f2, f3 ∈ [0, 1
2 ] such that 1−fi

2 ≤
wi ≤ 1 − fi where i = 1, 2, 3, we have
1
2 (Gξ(w1, f1) +Gξ(w2, f2)) ≤ κ · Gξ

(
w1+w2

2 , f1+f2
2

)
and 1

3 (Gξ(w1, f1) +Gξ(w2, f2) +Gξ(w3, f3)) ≤
κ · Gξ

(
w1+w2+w3

3 , f1+f2+f3
3

)
hold for any ξ ∈ [0, 1

4 ],

where κ = 1019
1000 .

Proof. The proof is almost the same as Lemma 6.4,
except that here we only need to prove for ξ = 1

4 . This is
also achieved by proving that for all w1, w2, w3 ∈ [0, 1

2 ]

and f1, f2, f3 ∈ [0, 1
2 ] such that 1−fi

2 ≤ wi ≤ 1− fi, i =
1, 2, 3, we have 1

2 (G 1
4
(w1, f1) + G 1

4
(w2, f2)) ≤ κ1 ·

G 1
4

(
w1+w2

2 , f1+f2
2

)
and 1

3 (G 1
4
(w1, f1)+2G 1

4
(w2, f2)) ≤

κ2 · G 1
4

(
w1+2w2

3 , f1+2f2
3

)
, where κ1 = 1009

1000 , κ2 = 1009
1000

and κ1κ2 ≤ κ. The Mathematica code to verify the
lemma is in Section 8.

Now it remains to handle the case when 1 /∈ L(v1).
So in the rest of this section we will assume that f1 = 0.

According to the convention in Algorithm 3, we
have either 1 /∈ L(v2) or d2 = 0. We will defer the
discussion of this d2 = 0 case to the end of this section.
If 1 /∈ L(v2) we have f1 = y1 = 0 and this is true for
both actual value and computed value. So we fix f1, y1
to be zero in our recursion and discuss the contraction
rate of this partially fixed function

F1 =
1

1 +
∑4

j=2(1− fj)(1− yj)
.

The contraction rate should not involve the derivatives
of f1 and y1, namely

α(f ,y) = P1(f ,y) + P2(f ,y)

where

P1(f ,y) = Φ(F1)F1 ·M ·
∑

j∈L(v1)\{1}

fj

∣∣∣∣∣∣∣1−
4∑

k=1
k ̸=j

Fk

1− fk

∣∣∣∣∣∣∣
P2(f ,y) = Φ(F1)F1 ·

4∑
j=2

Fj

(1− yj)Φ(yj)

and Fk = (1−fk)(1−yk)

1+
∑4

j=2(1−fj)(1−yj)
is also partially fixed

accordingly.
Discussion on the absolute values. Let

Dj ≜ 1−
∑4

k=1
k ̸=j

Fk

1−fk
for j = 2, 3, 4. Recall that

4∑
j=2

Dj =
∑

j∈L(v1)\{1}

fj

1−
4∑

k=1
k ̸=j

Fk

1− fk


= f1

4∑
j=2

Fj

1− fj
= 0,

so it cannot be the case that all Dj ’s have the same
sign. We will always, without loss of generality, assume
D2 has the opposite sign against others. Then |D2| +
|D3|+ |D4| is either 2D2 or −2D2.

Case 1: D2 is negative. In this case

α(f ,y) = Φ(F1)F1

M · (−2D2) +
4∑

j=2

Fj

(1− yj)Φ(yj)

 .

Denote A ≜ 1 +
∑4

j=2(1− fj)(1− yj) the denominator
of F1.

We first consider the case when yj = 1
2 for some

j ∈ {2, 3, 4}. By Theorem 5.1 we know that all yj ’s
should be accurately computed given the recursion
depth D is at least 3. So we can further discard all
derivatives of yj and obtain

α(f ,y) = 2Mf2 · Φ(F1)F1

 4∑
k=1
k ̸=2

Fk

1− fk
− 1


=

4Mf2(3− y3 − y4 −A)

A− 2
.

Notice that α is monotonically increasing on y2, so we
take y2 = 1

2 . After substituting 1 − f2 for f3 + f4 we

get α(f ,y) ≤ 4Mf2 ·
f3(

1
2−y3)+f4(

1
2−y4)

( 1
2−y3)(1−f3)+( 1

2−y4)(1−f4)
≤ 2M

where the last inequality is due to f2, f3, f4 ≤ 1
2 and

the monotonicity on f3 and f4.
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On the other aspect, if yj ̸= 1
2 for all j ∈ {2, 3, 4},

then by Theorem 5.1 we have yj ≤ 6
13 for all j ∈ {2, 3, 4}

since d2 is at most 1. Let wj = (1 − fj)(1 − yj), by
Lemma 6.9

α(f ,y) = Φ(F1)F1

2Mf2

 4∑
k=1
k ̸=2

Fk

1− fk
− 1

+

4∑
j=2

Fj

(1− yj)Φ(yj)


=

Φ(F1)F1

A

(
1− f2
Φ(y2)

+ 2Mf2(1−A)

+
4∑

j=3

1− fj
Φ(yj)

+ 2Mf2(1− yj)

)

=
Φ(F1)F1

A

(
1− f2
Φ(y2)

+ 2Mf2(1−A)

+
4∑

j=3

1− fj
Φ(1− wj

1−fj
)
+ 2Mf2

wj

1− fj

)

=
Φ(F1)F1

A
·1− f2

Φ(y2)
+ 2Mf2(1−A) +

4∑
j=3

G f2
2
(wj , fj)


≤ κ · Φ(F̂1)F̂1

Â
·(

1− f2
Φ(y2)

+ 2Mf2(1− Â) + 2G f2
2
(ŵ3, f̂3)

)
,

where ŵ3 = w3+w4

2 , f̂3 = f3+f4
2 , F̂1 = 1

1+w2+2ŵ3
and

Â = 1 + w2 + 2ŵ3. If we take ŷ3 = 1 − ŵ3

1−f̂3
then we

can get the symmetric form of α:

α̂(f ,y) =
Φ(F̂1)F̂1

Â

(
1− f2
Φ(y2)

+ 2Mf2(1− Â)

+
2(1− f̂3)

Φ(ŷ3)
+ 4Mf2(1− ŷ3)

)
.

Lemma 6.10. For all f2, f3, y2, y3 ∈ [0, 1
2 ] satisfying

f2 + 2f3 = 1,

1

13
≤ f2 ≤

1

2
,

0 ≤ y2, y3 ≤
6

13
,

we have

α̂(f2, f3, y2, y3) ≤
9231

10000
.

Proof. The lemma can be verified by Mathematica. The
codes are in Section 8.

In conclusion we have

α(f ,y) ≤ max
{
2M,κ · α̂(f2, f̂3, y2, ŷ3)

}
≤ max

{
2M,

1018

1000
· 9231
10000

}
<

94

100
.

Case 2: D2 is positive In this case

α(f ,y) = Φ(F1)F1

M · 2D2 +

4∑
j=2

Fj

(1− yj)Φ(yj)

 .

As we did in Case 1, we first consider when yj =
1
2

for some j ∈ {2, 3, 4}. We similarly obtain

α(f ,y) = 2Mf2 · Φ(F1)F1

1−
4∑

k=1
k ̸=2

Fk

1− fk


=

4Mf2(A− 3 + y3 + y4)

A− 2
.

Notice that α(f ,y) is monotonically increasing on
y3 and y4, so we take y3 = y4 = 1

2 which yields

α(f ,y) ≤ 4Mf2 ≤ 2M.

Now we once more assume yj ≤ 6
13 for all j ∈ {2, 3, 4}.

Recall λ = 9996
10000 , we now prove that

α(f ,y) =

∑4
j=2(1− fj)yj(

1
2 − yj) + 2Mf2(A− 3 + y3 + y4)

A
2 − 1

< λ.

Since the denominator of α(f ,y) is positive,

α(f ,y) < λ is equivalent to G ≜
∑4

j=2(1 − fj)yj(
1
2 −

yj) + 2Mf2 (A− 3 + y3 + y4)− λ
(
1
2A− 1

)
< 0.

Note that G is quadratic on y3, we
can write it as G = −(1 − f3)y

2
3 +(

2Mf2 +
1
2 (1− f3) +

1
2λ(1− f3)− 2Mf2(1− f3)

)
y3 +

C = (1 − f3)
(
−y23 +

(
2Mf2
1−f3

+ 1+λ
2 − 2Mf2

)
y3

)
+ C,

where C is a polynomial containing no y3.
Therefore, G is increasing in [−∞, x0] where x0 =

Mf2
1−f3

+ 1+λ
4 −Mf2 ≥ 1+λ

4 ≥ 6
13 . Since y3 and y4 are

symmetric, the same argument holds for y4.
We only need to prove that G′ ≜ G|y3=y4=

6
13

< 0.
Applying f2 + f3 + f4 = 1, a direct calculation yields

G′ =
2

13
Mf2

2 (13y2−6)+
1

338
(6−91λ+169y2+169λy2−

338y22) +
1

338
f2 ((13y2 − 6)(26y2 − 1− 52M − 13λ)).

Since y2 ≤ 6
13 , G

′ is increasing in [−∞, x1] where

x1 = 1+52M+13λ−26y2

104M > 1
2 . Therefore, we only need
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to prove that G′′ ≜ G′|f2= 1
2

= 9
338 + 3M

13 −
2λ
13 +(

1
4 −

M
2 + λ

4

)
y2 − y2

2

2 < 0, which holds for y2 ∈
[
0, 6

13

]
.

This concludes that α(f ,y) ≤ max {2M,λ} = λ.
The case d2 = 0. At last we come to the discussion

for d2 = 0. In this case y1 is not necessarily 0, but all
yj ’s are accurately computed. Redefine

F1 =
1− y1

1− y1 +
∑4

j=2(1− fj)(1− yj)
,

A = 1− y1 +
4∑

j=2

(1− fj)(1− yj).

As we did before, we shall discard the derivatives of yj ’s
and assume D2 has the opposite sign against others.
Now

α(f ,y) = 2Mf2 · Φ(F1)F1

∣∣∣∣∣∣∣1−
4∑

k=1
k ̸=2

Fk

1− fk

∣∣∣∣∣∣∣
=

4Mf2 |A− (1− y1)− (1− y3)− (1− y4)|
A− 2(1− y1)

=
4Mf2

∣∣∣∑4
j=2(1− fj)(1− yj)− 2 + y3 + y4

∣∣∣∑4
j=2(1− fj)(1− yj)− (1− y1)

is monotonically decreasing on y1. So we can take y1 = 0
and this is reduced to a situation we have discussed
before.

To summarize the analysis in section 6.2.2, we have

α(f ,y) ≤ max

{
94

100
, λ

}
= λ.

So far we have exhausted all possible cases when
degG (v) = 2. Putting together the conclusions of
section 6.1 and section 6.2, we can finish the proof of
Lemma 6.2.

6.3 Proof of Theorem 6.1 By the discussion on
cases in 6.1 and 6.2, we have finished the proof of
Lemma 6.2 so far.

Thus we can prove Theorem 6.1 now.

Proof. [Proof of Theorem 6.1] Let λ = 9996
10000 be con-

stant.
We first claim that if a vertex v satisfies degG (v) ≤

2 and |L(v)| ≥ degG (v) + 2, then one of the following
statements holds:

• P (G,L, v, i,D) = PrG,L [c(v) = i];

• |φ(P (G,L, v, i,D))− φ(PrG,L [c(v) = i])| ≤ C1 ·
λD−2, where φ(x) = 2 lnx−2 ln

(
1
2 − x

)
and C1 > 0

is a constant.

Given the claim, we have for some constant C2 > 0,
it holds that

|P (G,L, v, i,D)−PrG,L [c(v) = i]|

=
1

Φ(x̃)
· |φ(P (G,L, v, i,D))− φ(PrG,L [c(v) = i])|

≤ C2 · λD,

where Φ(x) ≜ φ′(x) = 1

x( 1
2−x)

and x̃ is some real

between φ(P (G,L, v, i,D)) and φ(PrG,L [c(v) = i]).
Now assume (G = (V,E), L) satisfies |L(v)| ≥

degG (v) + 1 for every v ∈ V . Let v ∈ V be an ar-
bitrary vertex and consider the computation tree of
P (G,L, v, i,D). According to the construction in Sec-
tion 2, all the smaller instances P (G′, L′, v′, i′, D′) called
by the procedure satisfy |L(v)| ≥ degG′ (v′) + 2 and
degG′ (v′) ≤ 2, i.e., the condition specified in the above
claim. Further note that in all cases, the 1-norm of the
gradients of our recursions

• F (x, y, z) = 1−x
3−x−y , if degG (v) = 1 and |L(v)| = 2;

• F (x, y) = 1−x
2+y , if degG (v) = 1 and |L(v)| = 3;

• F (x) = 1−x
3 , if degG (v) = 1 and |L(v)| = 4;

• F (f ,y) = (1−fi)(1−yi)∑
j∈L(v)(1−fj)(1−yj)

, if degG (v) = 2;

• F (x,y, z) = (1−xi)(1−yi)(1−zi)∑
j∈L(v)(1−xj)(1−yj)(1−zj)

, if

degG (v) = 3,

are bounded above by some constants for parameters
in the range [0, 1

2 ]. Therefore it follows from the mean
value theorem and the claim that

|P (G,L, v, i,D)−PrG,L [c(v) = i]| ≤ C · λD.

for some constant C > 0.
It remains to prove the claim. We apply induction

on D. The base case is that D = 2. It follows from
Theorem 5.1 and Lemma 5.2 that if PrG,L [c(v) = i]
is 0 or 1

2 , then the algorithm return the correct value,
i.e., P (G,L, v, i,D) = PrG,L [c(v) = i]. Otherwise, the
function φ(·) is bounded from above and thus the claim
holds. For D > 2, the claim follows from the induction
hypothesis and Lemma 6.1.

7 Proof of the Main Theorem

In this section, we prove Theorem 1.1. We start the
proof by first analyzing the running time of Algorithm 1.

Let G = (V,E) be a graph with |V | = n, L be its
color lists, v ∈ V be a vertex, i ∈ {1, 2, 3, 4} be a color
and D be nonnegative integer. Let τ(G,L, v, i,D) de-
note the running time of the procedure P (G,L, v, i,D),
then we have:
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Lemma 7.1. If degG (v) ≤ 2, then τ(G,L, v, i,D) =
O
(
n312D

)
.

Proof. We apply induction on n to show that for some
constant C ≥ 0, τ(G,L, v, i,D) ≤ C · n312D. The base
case is that n = 1, then the algorithm terminates in
constant time.

For general n, we need to analyze cases degG (v) =
1, 2 respectively.

Case degG (v) = 1: Algorithm 2 contains two
subcases. We use an adjacency matrix to represent a
graph. Thus we can construct in n2 time the graph
Gv which contains n − 1 vertices. We then have
the following recursions for the two cases respectively
(assuming notations in the description of Algorithm 2):

τ(G,L, v, i,D) ≤ τ(Gv, L1,i, v1, i,D − 1) + n2;

τ(G,L, v, i,D) ≤ τ(Gv, L1,i, v1, i,D − 1)+

τ(Gv, L1,j , v1, j,D − 1) + n2.

Then the lemma follows from the induction hypothesis.
Case degG (v) = 2: Algorithm 3 has at most 12

branches, we have (assuming notations in the descrip-
tion of Algorithm 3):

τ(G,L, v, i,D) ≤
∑
k∈d1

∑
w∈L(v1)

τ(Gv,v1
, L′

k,w, w,D − 1)

+
∑

j∈L(v)

τ(Gv, L2,j , j,D − 1) + n2.

Then the lemma follows from the induction hypothesis.

If degG (v) = 3, then the algorithm P (G,L, v, i,D)
will call P3(G,L, v, i,D) described in Algorithm 4.
However, since the maximum degree of G is at most
three hence in further recursion call to Algorithm 1, the
degree of a vertex decreases by at least one. Therefore
Algorithm 4 can be called at most once. Combining
Lemma 7.1, we have

Lemma 7.2. τ(G,L, v, i,D) = O
(
n312D

)
.

Now we prove Lemma 3.1.

Proof. [Proof of Lemma 3.1] First, we need to bound
the value PrG,L [c(v) = i] on the computation tree.
If PrG,L [c(v) = i] = 0 then it is clear to see
P (G,L, v, i,D) = 0 thus we are done. Otherwise we
have PrG,L [c(v) = i] ≥ 1

13 if (G,L, v) is a reachable in-
stance. In previous discussion we know that (G,L, v) is
on the root of our computation tree if this instance is
not reachable. In this case

PrG,L [c(v) = i] =∏d
k=1(1−PrGv,Lk,i

[c(vk) = i])∑
j∈L(v)

∏d
k=1(1−PrGv,Lk,j

[c(vk) = j])
,

where d = degG (v) ≤ 3 and |L(v)| ≤ 4. It yields

PrG,L [c(v) = i] ≥
(
1− 1

2

)3(
1− 1

2

)3
+ 1 + 1 + 1

=
1

25
.

Combining with the bound of reachable cases it implies
PrG,L [c(v) = i] ≥ 1

25 for all instances in computation
tree.

By Theorem 6.1, there exists constants λ = 9996
10000

and C > 0 such that for every list-coloring instance
(G,L) satisfying conditions in the statement of the
Lemma, it holds that

|P (G,L, v, i,D)−PrG,L [c(v) = i]| ≤ C · λD−3

for all D ≥ 3.
For any 0 < ε < 1, let t be the smallest integer such

that C · λt−3 ≤ ε
25 and let p̂ = P (G,L, v, i, t). We can

show that Algorithm 1 up to depth t is the algorithm
outputs p̂ such that

(1− ε)p̂ ≤ PrG,L [c(v) = i] ≤ (1 + ε)p̂

in time poly(|V | , 1
ε ).

Theorem 6.1 implies

PrG,L [c(v) = i]− ε

25
≤ p̂ ≤ PrG,L [c(v) = i] +

ε

25

and thus by the bound of PrG,L [c(v) = i] above it holds
that

(1− ε)PrG,L [c(v) = i] ≤ p̂ ≤ (1 + ε)PrG,L [c(v) = i] .

So

(1− ε)p̂ ≤ p̂

1 + ε
≤ PrG,L [c(v) = i] ≤ p̂

1− ε
≤ (1+ ε)p̂ .

Next we show that Algorithm 1 up to depth t is a
polynomial time algorithm with respect to |V | and 1

ε .
By Lemma 7.2, τ(G,L, v, x, t) = O

(
n312t

)
. Since t is

the smallest integer such that C · λt−3 ≤ ε
25 , we have

t− 4 ≤ logλ
ε

25C
≤ t− 3 ,

which implies τ(G,L, v, x, t) = O
(
n312logλ

ε
25C

)
=

O
(
n3
(
25C
ε

)− logλ 12
)
. λ and C are constants, so

τ(G,L, v, x, t) = poly
(
|V | , 1

ε

)
.

Finally, combining Lemma 3.1 and Lemma 2.1
completes the proof of Theorem 1.1.

8 Computer Assisted Proofs

We utilize some Mathematica codes to assist our proof.
Due to the limit of space, we omit the codes in the
current version. Please refer to the full version of the
paper.
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