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Abstract
In this paper, we study the two-facility location
game with optional preference where the accept-
able set of facilities for each agent could be differ-
ent and an agent’s cost is his distance to the clos-
est facility within his acceptable set. The objec-
tive is to minimize the total cost of all agents while
achieving strategyproofness. For general metrics,
we design a deterministic strategyproof mechanism
for the problem with approximation ratio of 1+2α,
where α is the approximation ratio of the offline op-
timization version. In particular, for the setting on
a line, we improve the earlier best ratio of n/2 + 1
[Yuan et al., 2016] to a ratio of 2.75.

1 Introduction
Facility location games have been studied extensively in re-
cent years. In the general setting, an authority adopts a mech-
anism to decide where to place the facilities in the existence
of participating agents with their reported locations or pref-
erences. The authority aims to minimize the social cost on
the condition that agents will not gain by misreporting their
information. This property is called strategyproofness. The
cost of an agent is defined as his distance to the facility. In
the most classic setting for single facility on a line and pri-
vate location information of agents, the median mechanism is
strategyproof and minimizes the social cost [Moulin, 1980].
Procaccia and Tennenholtz introduced the setting for two-
facility location games and initiated the approximate mech-
anism design for facility location games [Procaccia and Ten-
nenholtz, 2009]. In this two-facility model, an agent’s cost
is his distance to the closer facility. Unlike the single facility
setting, the optimality no longer coincides with strategyproof-
ness in this model. They proved constant lower bound for the
approximation ratio and provide a strategyproof mechanism
with linearO(n) approximation ratio. This left a huge gap for
the ratio. Lu et al. obtained a randomized mechanism which
achieves a constant approximation ratio of 4 and proved a
linear lower bound Ω(n) for all deterministic strategyproof
mechanisms [Lu et al., 2010].

In their model, two facilities are identical and an agent is

interested in the one closer to him. For two heterogeneous
facilities, some agent may only accept one of them and the
cost is his distance to that particular one. Of course, if every
agent is only interested in one of them, it becomes two sep-
arate single facility games and the solutions become trivial.
The interesting setting is that some agents are interested in
both facilities while others are interested in only one of them,
and these preferences are agents’ private information. In gen-
eral, an agent’s cost is his distance to the closest facility in
his acceptable set. This heterogeneous facilities model was
proposed in [Yuan et al., 2016]. To study the effect of pri-
vate preference, they assumed that the location information is
public in this new model. This is also a more realistic model
since in many real facility location applications, agents’ loca-
tions can be publicly verified.

In their paper, they proved a lower bound of 2 and pro-
vided a strategyproof mechanism with linear O(n) approxi-
mation ratio. This again left a huge gap for the ratio. It is also
not clear whether there is a similar large gap between ran-
domized and deterministic mechanisms as the homogeneous
two-facility setting.

Besides its application relevance, the facility location game
is also a very important playground for the theory of strate-
gyproof mechanisms without money. Due to the remarkable
Arrow’s impossibility theorem [Arrow, 1950] and Gibbard-
Satterthwaite’s impossibility theorem [Gibbard, 1973; Sat-
terthwaite, 1975], the space of strategyproof mechanisms is
very limited. Gibbard-Satterthwaite’s impossibility theorem
states that any strategyproof social choice function onto a set
of alternatives with at least three options is a dictatorship in
the general preference domain. Basically, there are only two
types of strategyproof mechanisms: dictatorship or majority
voting on two options. The median mechanism is neither of
them. The existence of such non trivial strategyproof mech-
anisms is due to single-peaked preference structure of the
problem while the Gibbard-Satterthwaite’s impossibility the-
orem is for general preferences. Due to this, single-peaked
preference is an important direction in the study of strate-
gyproof mechanisms without money. Studying other variants
of facility location games may lead to the discovery of other
interesting preference structures and non trivial strategyproof
mechanisms. In most extended version of facility location
games, the proposed strategyproof mechanisms are some ver-
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sions (maybe randomized) of dictatorship, a majority voting
of two boundary options or things like that. The proportional
mechanism from [Lu et al., 2010] is one notably nontrivial
example. But this one only satisfies a weaker version of strat-
egyproofness, namely strategyproofness in expectation. This
might be the reason why there is a huge gap between ran-
domized and deterministic mechanisms. It would be more
interesting if there are other nontrivial deterministic mecha-
nisms.

1.1 Our Contribution
In this paper, we design a novel strategyproof mechanism
which achieves an approximation ratio of 1 + 2α, where α
is the approximation ratio of the offline optimization version.
If we do not care about computational complexity or the of-
fline optimization problem is polynomial time solvable such
as the line metric case, this is a 3-approximation strategyproof
mechanism. This asymptotically resolves the problem of the
two heterogeneous facilities game. Our mechanism is very
simple. We first ignore agents’ preferences and assume that
both facilities are acceptable for each agent. We then, purely
based on the public location information of agents, compute
the optimal locations of two facilities, which we call s1 and
s2. On a line, the optimal location can be computed in poly-
nomial time. Then among four possible locations of the two
facilities (s1, s1), (s1, s2), (s2, s1), (s2, s2), we choose the
one with the minimum social cost based on agents’ reported
preferences.

For the special case of line metric, we further improve
the analysis and show that the same mechanism is of 2.75-
approximation. On the other hand, we construct an example
to show that the approximation ratio of our mechanism is at
least 1 +

√
2 and conjecture that this lower bound is tight.

Our mechanism is deterministic and very simple but at
the same time highly non-trivial in the sense that its strate-
gyproofness requires an interesting argument. It does not be-
long to the two exception families of Gibbard-Satterthwaite’s
impossibility theorem. The reason for the median mechanism
being strategyproof is the single-peaked preference. It is an
interesting open direction to figure out what kind of prefer-
ence structure makes our mechanism strategyproof. This may
lead to a generalized version of our mechanism, which works
for a family of problems.

It is natural to think about the extension of our mechanism
for the facility location game with three or more facilities.
However, there is an example to show that the mechanism is
no longer strategyproof even for line metric. The situation is
similar to what happens in the proportional mechanism [Lu
et al., 2010], whose three-facility version is no longer strate-
gyproof. It is an interesting open question to extend our re-
sult to the facility location game with three or more facilities.
We note that the same problem for homogeneous facilities
remains open after almost a decade.

1.2 Related Works
There are two major perspectives to approach the facility
location game, namely, characterizing strategyproof mech-
anisms and designing strategyproof mechanisms. The clas-
sic agent preference for facility location games on a line is a

special case of single-peaked preference for which [Moulin,
1980] characterized all the anonymous, strategyproof and ef-
ficient mechanisms and at the same time showed that median
mechanism is strategyproof for minimizing social cost. This
is the pioneering work in the field. Later on, more charac-
terizations are studied on networks [Schummer and Vohra,
2002], for two facilities [Fotakis and Tzamos, 2014] and for
double-peaked preference [Filos-Ratsikas et al., 2017]. There
are also characterizations for other variants of facility location
games.

When optimality no longer coincides with strategyproof-
ness, Procaccia and Tennenholtz initiated the approximate
mechanism design for facility location games [Procaccia and
Tennenholtz, 2009]. Since then, facility location games are
enriched from many different perspectives.

In terms of preference of agents for a single facility, [Cheng
et al., 2011] initiated obnoxious facility location games where
agents want to be far away from the facility, followed by
[Ibara and Nagamochi, 2012; Oomine and Nagamochi, 2016;
Mei et al., 2018b]. [Zou and Li, 2015] and [Feigenbaum
and Sethuraman, 2015] studied dual preference where agents
have different preferences towards the single facility. [Filos-
Ratsikas et al., 2017] studied double-peaked preference.

In terms of the agents’ cost function with respect to the
distance to the facility, besides linear functions, there are also
other functions studied. For example, threshold based linear
function [Mei et al., 2018a], agent dependent linear function
(happiness) [Mei et al., 2016] and concave function [Fotakis
and Tzamos, 2016].

In terms of social objective, besides the mostly studied so-
cial cost/utility and maximum cost/utility, there are also other
objectives studied like sum of square of distances[Feldman
and Wilf, 2013; Mei et al., 2018b], difference of maximum
distance and minimum distance (envy) [Cai et al., 2016].

The studies on heterogeneous facilities was initiated by
[Serafino and Ventre, 2014; Serafino and Ventre, 2015],
where the cost of an agent who likes both facilities is the sum
of the distances to both facilities. When the cost is only af-
fected by the closer facility or the farther facility, it is called
optional preference and is studied by [Yuan et al., 2016].
Recently fractional preference is studied by [Fong et al.,
2018], where the cost is a weighted sum of the two distances.
There are also works setting a distance constraint between the
two facilities, either maximum distance [Zou and Li, 2015;
Chen et al., 2018] or minimum distance [Duan et al., 2019].

For other metric spaces, [Alon et al., 2010] and [Cheng
et al., 2013] studied networks. [Lu et al., 2010] studied
Euclidean space where a 4-approximated randomized strat-
egyproof mechanism is proposed.

2 Preliminaries
There are n agents in a metric space with a distance met-
ric d() and the government is to build two facilities (named
as F1 and F2) for them. Agent i is located at xi and has a
preference pi ∈ {{F1}, {F2}, {F1, F2}}. Here, we call x =
{x1, x2, ..., xn} as location profile and p = {p1, p2, ..., pn}
as preference profile.

Given that F1 is built at y1 and F2 is built at y2, we define
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the cost of agent i as cx,p,i(y1, y2) = mink:Fk∈pi d(xi, yk).
Here, we denote by d(x, y) the distance between x and y in
the metric space. The social cost is defined as SCx,p(y1, y2)
=
∑n

i=1 cx,p,i(y1, y2).
In this model, the government uses a mechanism to decide

the places to build the facilities. More specifically, a mecha-
nism takes a location profile x and a preference profile p as
input and outputs facilities’ locations.

Given that an agent might misreport his preference, which
will lead to a different output by the mechanism and might
lower his own cost, the government needs to design a strate-
gyproof mechanism to avoid this situation.
Definition 1. (strategyproofness)

A mechanism M is strategyproof if for any agent, cheat-
ing will not decrease her cost. Formally, for any location and
preference profile x and p and any agent i, if he cheats by
misreporting his preference as p′i and the preference profile
changes to p′ = {p1, ..., pi−1, p′i, pi+1, ..., pn}, then there
must be cx,p,i(M(x,p)) ≤ cx,p,i(M(x,p′)).

Given that no strategyproof mechanism achieves the min-
imum social cost [Yuan et al., 2016], we use approximation
ratio to evaluate the performance of mechanisms.
Definition 2. (approximation ratio)

A mechanism M has an approximation ratio of γ if for any
location and preference profile x and p, SCx,p(M(x,p)) ≤
γ ·miny1,y2

SCx,p(y1, y2).

3 Our Strategyproof Mechanism
In this section, we introduce our mechanism and prove its
strategyproofness. In Section 4, we will analyze its approxi-
mation ratio.

3.1 The Mechanism
Mechanism 1. Denote by q the preference profile
{{F1, F2}, {F1, F2}, ..., {F1, F2}}, i.e. every agent prefers
both facilities. Let A be the set of all available facility
locations and let location pair (s1, s2) satisfy (s1, s2) =
arg miny1,y2∈A SCx,q(y1, y2). Finally, we output the pair
(f1, f2) = arg miny1,y2∈{s1,s2} SCx,p(y1, y2). We break the
tie in this order: (s1, s1), (s1, s2), (s2, s1), (s2, s2).

Actually, it is a special case of the k-median problem to
calculate s1 and s2, i.e. the case in which k is equal to 2.
When |A| is finite, we can enumerate the locations of s1 and
s2 inO(|A|2) time. However, it might be hard when |A| is not
finite and we may only use some approximation algorithm to
solve the problem. For instance, [Arora et al., 1998] provides
a PTAS for k-median for Euclidean space R2.

In the rest of this paper, we denote by s′1 and s′2 the re-
sult calculated by the 2-median problem approximation ora-
cle with approximation ratio α.

3.2 Strategyproofness
Theorem 1. Mechanism 1 is strategyproof.

Proof. By the definition of Mechanism 1, we can see that s′1
and s′2 do not rely on agents’ preferences and the two facil-
ities’ locations will always be one among (s′1, s

′
1), (s′1, s

′
2),

(s′2, s
′
1) and (s′2, s

′
2).

(y1, y2) SCx,p′(y1, y2)− SCx,p(y1, y2)
(s′1, s

′
1) 0

(s′1, s
′
2) d(xi, s

′
1)− d(xi, s

′
2) ≥ 0

(s′2, s
′
1) 0

(s′2, s
′
2) 0

Table 1: the difference in social cost for p′ and p

We first prove that the agent whose preference is {F1, F2}
will not cheat. Suppose pi = {F1, F2}. We assume that s′2
is closer to agent i than s′1. (The other case is the same ex-
cept the tie breaking which does not affect the proof much.)
Therefore, agent i has incentive to cheat only if Mechanism
1’s output is (s′1, s

′
1). Let p be the preference profile where

no agent cheats and p′ be the preference profile where agent
i misreports his preference as {F1}. Table 1 shows the differ-
ence in social cost for p′ and p.

Since Mechanism 1’s output is (s′1, s
′
1) for preference pro-

file p, SCx,p(s′1, s
′
1) is the minimum among those four social

costs for p. By Table 1, we can see that SCx,p′(s′1, s
′
1) is the

minimum among those four social costs for p′. This shows
that Mechanism 1’s output will still be (s′1, s

′
1) even if agent i

misreports his preference as {F1}. Therefore, agent i has no
incentive to misreport his preference as {F1}. Using the same
analysis, we can prove that agent i has no incentive to misre-
port his preference as {F2}. Hence, agent i has no incentive
to cheat.

We then prove that the agent whose preference is {F1} or
{F2} will not cheat. Suppose that pi = {F1}. (Using a sim-
ilar analysis we can prove the case that pi = {F2}.) Again,
We just assume that s′2 is closer to agent i than s′1 since the
proof for the other case is similar. Hence, agent i might cheat
only when F1 is built at s′1. At this time, F2 may be built at s′1
or s′2. Let p be the preference profile where no agent cheats,
p′ be the preference profile where agent imisreports his pref-
erence as {F2} and p′′ be the preference profile where agent
i misreports his preference as {F1, F2}. Table 2 shows the
difference in social cost for p′ and p and for p′′ and p.

If F2 is built at s′1 for p, then

SCx,p(s′1, s
′
1) ≤ min{SCx,p(s′2, s

′
1), SCx,p(s′2, s

′
2)}.

By Table 2, we can see that

SCx,p′(s′1, s
′
1) ≤ min{SCx,p′(s′2, s

′
1), SCx,p′(s′2, s

′
2)},

(y1, y2) SCx,p′(y1, y2)− SCx,p(y1, y2)
(s′1, s

′
1) 0

(s′1, s
′
2) d(xi, s

′
2)− d(xi, s

′
1) ≤ 0

(s′2, s
′
1) d(xi, s

′
1)− d(xi, s

′
2) ≥ 0

(s′2, s
′
2) 0

(y1, y2) SCx,p′′(y1, y2)− SCx,p(y1, y2)
(s′1, s

′
1) 0

(s′1, s
′
2) d(xi, s

′
2)− d(xi, s

′
1) ≤ 0

(s′2, s
′
1) 0

(s′2, s
′
2) 0

Table 2: the difference in social cost for p′ and p and for p′′ and p

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

240



SCx,p′′(s′1, s
′
1) ≤ min{SCx,p′′(s′2, s

′
1), SCx,p′′(s′2, s

′
2)}.

This means F1 will not be built at s′2 even if agent imisreports
his preference as {F2} or {F1, F2}.

If F2 is built at s′2 for p, then

SCx,p(s′1, s
′
2) ≤ min{SCx,p(s′2, s

′
1), SCx,p(s′2, s

′
2)}.

By Table 2, we can see that

SCx,p′(s′1, s
′
2) ≤ min{SCx,p′(s′2, s

′
1), SCx,p′(s′2, s

′
2)},

SCx,p′′(s′1, s
′
2) ≤ min{SCx,p′′(s′2, s

′
1), SCx,p′′(s′2, s

′
2)}.

Similarly, this means that agent i’s misreporting will not
make F1 closer. Therefore agent i has no incentive to
cheat.

4 Analysis of the Approximation Ratio
4.1 Preparation
Before we analyze the approximation ratio of Mechanism 1,
we introduce some lemmas.
Lemma 1. Denote Mechanism 1 by M . Suppose there
is an instance (x,p) such that SCx,p(M(x,p)) = α ·
miny1,y2 SCx,p(y1, y2) and pi = {F1, F2}. Then there ex-
ists a preference profile p̃ which differs only at agent i’s pref-
erence such that p̃i 6= {F1, F2} and SCx,p̃(M(x, p̃)) ≥
α ·miny1,y2

SCx,p̃(y1, y2).

Proof. Suppose (x,p) is an instance as above. Let
(opt1, opt2) be the locations such that SCx,p(opt1, opt2) =
miny1,y2

SCx,p(y1, y2). Define

p̃i =

{{F1}, if d(xi, opt1) < d(xi, opt2)

{F2}, otherwise
.

Let p̃ be the preference profile obtained by replacing pi with
p̃i in p.

We first prove SCx,p(M(x,p)) ≤ SCx,p̃(M(x, p̃)).
Since the location profiles in (x,p) and (x, p̃) are the same,
(s′1, s

′
2) in M(x,p) and M(x, p̃) are the same. Note that for

any (y1, y2) we have SCx,p(y1, y2) ≤ SCx,p̃(y1, y2), since
p̃i ⊆ pi and other agents’ preferences are the same. There-
fore, we have SCx,p(y1, y2) ≤ SCx,p̃(y1, y2) for y1, y2 ∈
{s′1, s′2}, which implies

SCx,p(M(x,p)) = min
y1,y2∈{s′1,s′2}

SCx,p(y1, y2)

≤ min
y1,y2∈{s′1,s′2}

SCx,p̃(y1, y2) = SCx,p̃(M(x, p̃)).

We then prove min
y1,y2

SCx,p(y1, y2) ≥ min
y1,y2

SCx,p̃(y1, y2).

By the definition of p̃i, we have

SCx,p̃(opt1, opt2) = SCx,p(opt1, opt2).

Therefore, we have

min
y1,y2

SCx,p̃(y1, y2) ≤ SCx,p̃(opt1, opt2)

=SCx,p(opt1, opt2) = min
y1,y2

SCx,p(y1, y2).

Thus, we have SCx,p̃(M(x, p̃)) ≥ SCx,p(M(x,p)) = α ·
miny1,y2 SCx,p(y1, y2) ≥ α · min

y1,y2

SCx,p̃(y1, y2).

Since analyzing the approximation ratio is just finding
an instance with maximum α as above, by Lemma 1 and
simple induction, we can assume pi 6= {F1, F2} for every
i ∈ {1, 2, ..., n} when we analyze the approximation ratio of
Mechanism 1.
Lemma 2. SCx,q(s′1, s

′
2) ≤ α · miny1,y2

SCx,p(y1, y2)
holds for any location profile x and preference profile p.

Proof. Since SCx,q(s′1, s
′
2) gives an α-approximation for

SCx,q(s1, s2), we have

SCx,q(s′1, s
′
2) ≤ α · SCx,q(s1, s2)

=α · min
y1,y2

SCx,q(y1, y2) ≤ α · min
y1,y2

SCx,p(y1, y2).

4.2 Analysis of the Approximation Ratio of 1+2α
We first introduce some notations to simplify the description
of later analysis.

Given location profile x and preference profile p, by
Lemma 1, we can divide all agents into two sets {i|pi =
{F1}} and {i|pi = {F2}}. Let opt1 be the geometric median
of multiset S1 = {xi|pi = {F1}} and opt2 be the geometric
median of multiset S2 = {xi|pi = {F2}}. Then we have
SCx,p(opt1, opt2) = miny1,y2

SCx,p(y1, y2).
Given point set S and point v, we define d(S, v) =∑
u∈S d(u, v). (This definition differs from the common one

where d(S, v) is defined as minu∈S d(u, v).) We define some
notations as follows.

• SCk , min{d(Sk, s
′
1), d(Sk, s

′
2)}, k = 1, 2.

SC , SC1 + SC2.
• OPTk , d(Sk, optk), k = 1, 2.
OPT , OPT1 +OPT2.

• BESTk ,
∑

x∈Sk
min{d(x, s′1), d(x, s′2)}, k = 1, 2.

BEST , BEST1 +BEST2.
Intuitively, SC is equal to the social cost calculated by

Mechanism 1, i.e. SCx,p(M(x,p)). OPT is equal to
the minimum social cost for p, i.e. miny1,y2 SCx,p(y1, y2).
BEST is equal to the approximated minimum social cost for
q, i.e. SCx,q(s′1, s

′
2). (q is defined in Mechanism 1.) With

these notations, Lemma 2 implies BEST ≤ α ·OPT .
Now, we introduce our result on the approximation ratio of

Mechanism 1.
Theorem 2. Mechanism 1 has an approximation ratio of 1 +
2α, i.e. SC ≤ (1 + 2α) ·OPT .

Proof. We try to prove SC −OPT ≤ 2 ·BEST . It suffices
to show SCk−OPTk ≤ 2 ·BESTk, k = 1, 2. By symmetry,
we only show SC1 −OPT1 ≤ 2 ·BEST1.

We divide S1 into A and B using the following rule. For
each x ∈ S1, if d(x, s′1) < d(x, s′2), then let x ∈ A. Oth-
erwise, let x ∈ B. Without loss of generality, suppose that
|A| ≥ |B|. Observe that for any two agents’ locations x and
y, by triangle inequality we have

d(x, s′1) + d(y, s′1)− (d(x, opt1) + d(y, opt1))

≤d(x, s′1) + d(y, s′1)− d(x, y) ≤ 2 · d(x, s′1).
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Hence, we divide A into A1 and A2 such that |A1| = |B| and
A = A1 ∪ A2 and match each location in B with a location
in A1. Using the observation above, we have

SC1 −OPT1 ≤ d(S1, s
′
1)− d(S1, opt1)

≤2 · d(A1, s
′
1) + (d(A2, s

′
1)− d(A2, opt1))

≤2 · d(A, s′1) ≤ 2 ·BEST1.

By Lemma 2, we have SC − OPT ≤ 2 · BEST ≤ 2α ·
OPT . Hence, SC ≤ (1 + 2α) ·OPT .

Consider the following two special metric spaces:
• The metric space is R2. In this case, for any fixed
ε > 0, by [Arora et al., 1998] we have a (1 + ε/2)-
approximation polynomial time algorithm for 2-median
problem, i.e. α = 1 + ε/2. Thus, Mechanism 1 guaran-
tees an approximation of 3 + ε.

• The metric space is a line, i.e. R. In this case, it is easy
to find exact 2-median in polynomial time. Thus, Mech-
anism 1 guarantees an approximation of 3, which is a
substantial improvement given the best result achieved
by [Yuan et al., 2016] is n/2 + 1.

4.3 Improvement for Line Metric
In this section, we only consider the line metric case, i.e. the
metric space is R. For simplicity of later analysis, let ∆k =
(SCk − OPTk)/2, k = 1, 2 and ∆ = ∆1 + ∆2. In this
case, we can calculate exact s1 and s2 in polynomial time,
thus we just use s` and sr in the analysis instead and suppose
s` ≤ smid ≤ sr where smid is the midpoint of s` and sr.
Since the metric is R, opt1 and opt2 are the median values of
S1 and S2. Without loss of generality, we can assume both
|S1| and |S2| are even. (Otherwise we just double the number
of agents by making a copy of original agents. This does not
change the approximation ratio.)

We observe that our analysis can be tightened by doing
some trade-off so as to get the following result.
Theorem 3. Mechanism 1 has an approximation ratio of
2.75, i.e. SC ≤ 2.75 ·OPT .

Proof. We bound ∆1 first. By symmetry, we assume that
opt1 ≤ smid. Let sc be the point satisfying d(sc, smid) =
c · d(s`, sc). Here, c is a constant parameter to be determined
later.

We analyze in the following three cases, according to the
position of opt1.

Case 1. opt1 ≤ s`.
In this case, we divide S1 into four parts: X1, X2, X3 and

X4.
1. X1 contains the points on the left of opt1.
2. X2 contains the points between opt1 and s`.
3. X3 contains the points between s` and smid.
4. X4 contains the points on the right of smid.
We allocate points on the boundary in such a way that

|X1| = |X2|+ |X3|+ |X4| (This can be achieved since opt1
divides S1 into two parts, left part and right part, of the same
size).

Since opt1 ≤ s`, we find that ∆1 is equal to the distance
between s` and points in S1 which lie between opt1 and s`,
i.e. d(X2, s`). Hence, we have

∆1 = d(X2, s`) ≤ |X2| · d(opt1, s`)

≤ |X1| · d(opt1, s`) ≤ d(X1, s`).

In this case, we have

BEST1 = d(X1 ∪X2 ∪X3, s`) + d(X4, sr)

≥ d(X1, s`) + d(X2, s`) ≥ 2 ·∆1.

This implies ∆1 ≤ 1/2 ·BEST1.

Case 2. sc ≤ opt1 ≤ smid.
In this case, we divide S1 into five parts: X1, X2, X3, X4

and X5.
1. X1 contains the points between s` and opt1.
2. X2 contains the points between smid and sr.
3. X3 contains the points between opt1 and smid.
4. X4 contains the points on the left of s`.
5. X5 contains the points on the right of sr.
Similarly, we can assume |X1|+|X4| = |X2|+|X3|+|X5|.
By the definition of ∆1, using a similar proof as Theorem

2, we have

∆1 = min{d(X1, s`), d(X3, sr) + d(X2, sr)}.

In this case, we have

BEST1 = d(X1 ∪X3 ∪X4, s`) + d(X2 ∪X5, sr)

≥ d(X1, s`) + d(X2, sr) + d(X3, s`).

Since d(sc, smid) = c · d(s`, sc) and d(s`, smid) =
d(smid, sr), we have d(sc, sr) = (2c + 1) · d(s`, sc). Given
that opt1 ≥ sc in this case, d(v, sr) ≤ (2c + 1) · d(v, s`)
holds for every v ∈ X3. Thus, we have d(X3, sr) ≤
(2c+ 1) · d(X3, s`). Hence,

d(X3, sr) + d(X2, sr)

≤(2c+ 1) · d(X3, s`) + d(X2, sr)

≤(2c+ 1) · (d(X3, s`) + d(X2, sr)).

If d(X1, s`) ≤ (2c+ 1)/(2c+ 2) ·BEST1, then

∆1 ≤ d(X1, s`) ≤
2c+ 1

2c+ 2
BEST1.

Otherwise, d(X1, s`) > (2c+ 1)/(2c+ 2) ·BEST1. Then,

∆1 ≤ d(X3, sr) + d(X2, sr)

≤ (2c+ 1) · (d(X3, s`) + d(X2, sr))

≤ (2c+ 1) · (BEST1 − d(X1, s`))

<
2c+ 1

2c+ 2
BEST1.

Therefore, in this case, we have ∆1 ≤ (2c + 1)/(2c + 2) ·
BEST1.

Case 3. s` < opt1 < sc.
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In this case, we divide S1 into the same five parts defined
in Case 2. Similar to Case 2, we have

∆1 = min{d(X1, s`), d(X3, sr) + d(X2, sr)},
BEST1 = d(X1 ∪X3 ∪X4, s`) + d(X2 ∪X5, sr).

Let β be a constant parameter in (0, 1). We will determine
the value of β later.

If d(X2, sr) + d(X3, s`) ≥ β · d(X1, s`), we have

BEST1 ≥ d(X1, s`) + d(X2, sr) + d(X3, s`)

≥ (1 + β) · d(X1, s`)

≥ (1 + β) ·∆1.

This implies that ∆1 ≤ 1/(1 + β) ·BEST1.
Otherwise, d(X2, sr) + d(X3, s`) < β · d(X1, s`). Then

we have

β · d(X1, s`) > d(X2, sr) + d(X3, s`)

≥ d(X2, sr) + |X3| · d(opt1, s`)

≥ d(X2, sr) +
|X3|
|X1|

· d(X1, s`).

Now we use OPT1 to bound ∆1. By definition, we have

OPT1 = d(S1, opt1) ≥ d(X2, opt1) + d(X5, opt1).

Note that d(v, opt1) = d(opt1, sr)− d(v, sr) holds for every
v ∈ X2 and d(v, opt1) ≥ d(opt1, sr) holds for every v ∈ X5.
Hence, we have

OPT1
≥|X2| · d(opt1, sr)− d(X2, sr) + |X5| · d(opt1, sr)

=(|X2|+ |X5|) · d(opt1, sr)− d(X2, sr)

≥(|X2|+ |X5|) ·
2c+ 1

2c+ 2
· d(s`, sr)− d(X2, sr).

Note that we have d(X1, s`) ≤ |X1| · d(s`, opt1) ≤ |X1| ·
d(s`, sr)/(2c+ 2). Hence,

OPT1

≥(2c+ 1) · |X2|+ |X5|
|X1|

· d(X1, s`)− d(X2, sr)

≥(2c+ 1) · |X1| − |X3|
|X1|

· d(X1, s`)− d(X2, sr)

=(2c+ 1) · d(X1, s`)

− ((2c+ 1) · |X3|
|X1|

· d(X1, s`) + d(X2, sr))

≥(2c+ 1) · d(X1, s`)

− (2c+ 1)(
|X3|
|X1|

· d(X1, s`) + d(X2, sr))

≥(2c+ 1) · d(X1, s`)− (2c+ 1) · β · d(X1, s`)

=(2c+ 1) · (1− β) · d(X1, s`)

≥(2c+ 1) · (1− β) ·∆1.

This means that we have

∆1 ≤
1

(2c+ 1) · (1− β)
OPT1.

We summarize those three cases. Let c = 1 and β =
1/(2c + 1) = 1/3. At least one of the following will hap-
pen:

∆1 ≤ max{1

2
,

2c+ 1

2c+ 2
,

1

1 + β
} ·BEST1 =

3

4
BEST1,

or

∆1 ≤
1

(2c+ 1) · (1− β)
OPT1 =

1

2
OPT1.

Similarly, we can get the for ∆2:

∆2 ≤
3

4
BEST2 or ∆2 ≤

1

2
OPT2.

Since there is no relationship between OPT1 and BEST1,
we consider ∆1 and ∆2 together, using ∆ = ∆1 +∆2. With-
out loss of generality, we assume BEST1 ≥ BEST2. We
analyze in the following 4 cases:

Case 1: ∆1 ≤ 3/4 ·BEST1, ∆2 ≤ 3/4 ·BEST2. In this
case, we have

∆ ≤ 3

4
(BEST1 +BEST2) =

3

4
BEST ≤ 3

4
OPT.

Case 2: ∆1 ≤ 1/2 · OPT1, ∆2 ≤ 1/2 · OPT2. In this
case, we have

∆ ≤ 1

2
(OPT1 +OPT2) =

1

2
OPT.

Case 3: ∆1 ≤ 1/2 · OPT1, ∆2 ≤ 3/4 · BEST2. In this
case, we have

∆ ≤ 1

2
OPT1 +

3

4
BEST2 ≤

1

2
OPT +

3

8
BEST

≤ 7

8
OPT.

Case 4: ∆1 ≤ 3/4 · BEST1, ∆2 ≤ 1/2 · OPT2. In this
case, we have

∆ ≤ 3

4
BEST1 +BEST2

≤ 3

4
BEST1 +

1

8
BEST1 +

7

8
BEST2

=
7

8
BEST ≤ 7

8
OPT.

It is easy to see that ∆ ≤ 7/8 · OPT holds for all these
four cases. Therefore, we have SC − OPT = 2 · ∆ ≤ 2 ·
7/8 ·OPT = 7/4 ·OPT , i.e. SC ≤ 2.75 ·OPT .

4.4 A Lower Bound of the Approximation Ratio of
Mechanism 1

We provide a lower bound for the approximation ratio of
Mechanism 1.

Consider the line metric R. Let N be a positive integer.
Let N agents be located at x = 0 with preference {F1},
b(1 +

√
2)Nc agents be located at x = 1 with preference

{F1} and almost infinite (far greater than N ) agents be lo-
cated at x =

√
2 with preference {F2}. We can see that

(s`, sr) will be (0,
√

2). Note that the minimum social cost
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is N while the social cost calculated by Mechanism 1 is
min(b(1 +

√
2)Nc,

√
2N + b(1 +

√
2)Nc(

√
2− 1)). When

N increases to infinity, the ratio of social cost by Mechanism
1 to the minimum social cost approaches 1 +

√
2. Therefore,

1 +
√

2 is a lower bound of the approximation ratio of Mech-
anism 1.

5 Generalization
We have tried to generalize our mechanism to k facilities
(k ≥ 3). Our generalized mechanism first ignores agents’
preferences and assumes all facilities are acceptable for each
agent. Then it only uses the location profile to calculate
the optimal locations of all k facilities, which we denote as
s1, s2, ..., sk. Finally, the mechanism enumerates Fi’s loca-
tion being at sj , kk cases in total, and chooses the one that
minimizes the social cost.

However, unfortunately, this generalized mechanism is not
strategyproof when there are more than two facilities. We use
an example to show that this mechanism is not able to pre-
vent agents from misreporting their preferences when there
are three facilities.
Example 1. Consider the line metric. Suppose that l1 and l2
are two positive numbers satisfying 2l2 < l1 < 3l2. Let

• two agents whose preferences are {F2} be located at
x = 0,

• one agent whose preference is {F2} be located at x =
l1 − l2,

• one agent whose preference is {F2} be located at x = l1,
• one agent whose preference is {F2, F3} be located at
x = l1 + l2,

• almost infinite agents whose preferences are {F1} be lo-
cated at x = 0,

• almost infinite agents whose preferences are {F3} be lo-
cated at x = 2l1 + l2.

We can see that if we use the generalized mechanism on
this instance, (s1, s2, s3) will be (0, l1, 2l1 + l2). (See Figure
1.) The almost infinite agents at s1 with preferences {F1}
force F1 to be built at s1. (Otherwise, the social cost will be
almost infinite.) For the same reason, F3 will be built at s3.

By enumerating all three possible locations of F2 and cal-
culating the social costs, we find that if all agents report their
true preferences, then F2 will be built at s1. However, if the
agent at l1+l2 (with preference {F2, F3}) misreports his pref-
erence as {F2}, then F2 will be built at s2 and the cost of this

0 l1 − l2 l1 l1 + l2 2l1 + l2

{F2}
{F2}

{F2} {F2} {F2, F3}

s1 s2 s3

Figure 1: An example which shows the generalized mechanism is
not strategyproof. First 5 agents’ locations and preferences are illus-
trated in the figure.

agent will decrease from l1 to l2. Therefore, this generalized
mechanism fails to prevent this agent from misreporting his
preference.

In this example, we find that the preferred facilities of the
agent at l1 + l2 are built at the second nearest and the third
nearest possible location in {s1, s2, s3}. By hiding his pref-
erence to the facility which is built at the second nearest pos-
sible location, the agent increases the social cost and thus the
generalized mechanism chooses another solution where an-
other preferred facility of the agent is built at the nearest pos-
sible location to the agent. However, this situation will not
happen when there are only two facilities because the mech-
anism chooses the facilities’ locations only between two pos-
sible locations s1 and s2. That is the reason why the mech-
anism is strategyproof when there are only two facilities but
not strategyproof for three facilities.

Consider the facility location game with k facilities, where
k > 3. For every i ∈ {4, 5, ..., k}, we add almost infinite
agents whose locations are x = (i − 1) · l1 + l2 and prefer-
ences are {Fi} to the example above. We can see that the new
example shows that the generalized mechanism is not strate-
gyproof when there are k > 3 facilities. Hence, this general-
ized mechanism is not strategyproof for the facility location
game with more than two facilities.

6 Conclusion
To summarize, we have designed a strategyproof mechanism
whose approximation ratio is no more than 1+2α and no less
than 1+

√
2, where α is the approximation ratio of the offline

optimization version. It is an open question whether the ex-
act approximation ratio of this mechanism for line metric is
1 +
√

2. Furthermore, the bounds for approximation ratios of
strategyproof mechanisms for two facilities do not match yet.

Besides, it is also an interesting open question to design a
strategyproof mechanism with constant approximation ratio
for the facility location game with three or more facilities.
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