
FPTAS for Counting Monotone CNF ∗

Jingcheng Liu † Pinyan Lu‡

Abstract

A monotone CNF formula is a Boolean formula in con-
junctive normal form where each variable appears posi-
tively. We design a deterministic fully polynomial-time
approximation scheme (FPTAS) for counting the num-
ber of satisfying assignments for a given monotone CNF
formula when each variable appears in at most 5 clauses.
Equivalently, this is also an FPTAS for counting set cov-
ers where each set contains at most 5 elements. If we
allow variables to appear in a maximum of 6 clauses (or
sets to contain 6 elements), it is NP-hard to approxi-
mate it. Thus, this gives a complete understanding of
the approximability of counting for monotone CNF for-
mulas. It is also an important step towards a complete
characterization of the approximability for all bounded
degree Boolean #CSP problems. In addition, we study
the hypergraph matching problem, which arises natu-
rally towards a complete classification of bounded de-
gree Boolean #CSP problems, and show an FPTAS for
counting 3D matchings of hypergraphs with maximum
degree 4 .

Our main technique is correlation decay, a powerful
tool to design deterministic FPTAS for counting prob-
lems defined by local constraints among a number of
variables. All previous uses of this design technique fall
into two categories: each constraint involves at most
two variables, such as independent set, coloring, and
spin systems in general; or each variable appears in at
most two constraints, such as matching, edge cover, and
holant problem in general. The CNF problems studied
here have more complicated structures than these prob-
lems and require new design and proof techniques. As
it turns out, the technique we developed for the CNF
problem also works for the hypergraph matching prob-
lem. We believe that it may also find applications in
other CSP or more general counting problems.

∗This work was performed while the first author was an intern
at Microsoft Research Asia and an undergraduate at Shanghai
Jiao Tong University.
†University of California, Berkeley. liuexp@berkeley.edu
‡Microsoft Research. pinyanl@microsoft.com

1 Introduction

We study the complexity of approximately counting the
number of satisfying assignments of a given Boolean for-
mula. For any given parameter ε > 0, the algorithm out-
puts a number N̂ such that (1− ε)N ≤ N̂ ≤ (1 + ε)N ,
where N is the accurate number of solutions for the
given formula. We also require that the running time
of the algorithm be bounded by poly(n, 1/ε), where n is
the size of the formula. This is called a fully polynomial-
time approximation scheme (FPTAS). The randomized
relaxation of FPTAS is called fully polynomial-time ran-
domized approximation scheme (FPRAS), which uses
random bits in the algorithm and requires that the final
output be within the range [(1 − ε)N, (1 + ε)N ] with
high probability. Many interesting combinatorial prob-
lems can be described by Boolean formulas. However,
for many of them such as SAT, Exact-One, Not-All-
Equal among others, it is already NP-hard to deter-
mine whether a satisfying assignment exists. For these
problems, we cannot get a polynomial time algorithm
to count or approximately count (since we cannot rela-
tively approximate zero) the number of solutions unless
NP=P. Therefore, we mainly focus on those problems
for which there is always a satisfying assignment or we
have a polynomial time algorithm to determine that.
One famous such example is formulas in disjunctive nor-
mal form (DNF). It is easy to determine if a DNF for-
mula is satisfiable or not. Basically, a DNF formula is al-
ways satisfiable except in trivial cases where each clause
contains a contradiction (x and x̄). There is an FPRAS
for counting the number of satisfying assignments of any
given DNF formula [21, 22]. It is an important open
question to derandomize the algorithm [32, 14].

Conjunctive normal form (CNF) is more widely ap-
plicable than DNF. But the decision version is already
NP-hard. One interesting sub-family of CNF is mono-
tone CNF where each variable appears positively in
clauses. For monotone CNF, the decision version is triv-
ial: we can simply set all variables as True to satisfy the
formula. Therefore, it is an interesting problem to count
the number of solutions. Moreover, monotone CNF is
already quite expressive as any monotone Boolean func-
tion can be expressed as a monotone CNF. It also con-
tains numerous interesting combinatorial problems as

1531 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



special cases, so long as the combinatorial problem is
defined by local constraints and the feasible sets are ei-
ther downward closed or upward closed, which is typical
for many combinatorial problems. For example, vertex
cover (or complementary independent set) problem can
be viewed as monotone 2CNF; edge cover can be viewed
as read twice monotone CNF where each variable ap-
pears no more than twice. Indeed, monotone CNF is
exactly the same as set cover problem, where variables
are sets and clauses are elements.

In a previous work, we design an FPTAS for count-
ing edge covers for any given graph [25]. For counting
vertex covers (or independent sets), there is an FPTAS
if the maximum degree is 5 [34] and it is NP-hard even
for 6-regular graphs [30]. As counting independent sets
is a special case of counting monotone CNF, we have
the following hardness result.

Proposition 1.1. There is no FPRAS (or FPTAS)
to count monotone CNF if a variable can appear in 6
clauses unless NP=RP.

Given that, the best hope is to get an FPTAS for
monotone CNF formulas where each variable appears at
most 5 times. The main result of this paper is indeed
such an algorithm.

Theorem 1.1. There is FPTAS to count monotone
CNF if each variable appears at most 5 times.

This algorithm can also be interpreted as an FPTAS
for counting the number of set covers when each set
contains at most five elements. In particular this
covers the aforementioned FPTAS’s for counting edge
covers and independent sets. As for these two special
cases, the main technique is also correlation decay.
First, we use a probability distribution point of view
for the counting problem. Given a CNF formula, we
consider a uniform distribution over all its satisfying
assignments, which induces a marginal probability for a
variable’s assignment. There is a standard procedure to
compute the number of solutions from these marginal
probabilities. Our task is to estimate these marginal
probabilities. We establish a computation tree to
relate the marginal probability of a variable to that
of its neighbors. For counting independent sets, edge
covers and all other problems (to the best of our
knowledge) for which an FPTAS was designed using
correlation decay technique, there is only one layer of
neighbors. More concretely, all these problems belong
to one of two families: either each constraint involves
at most two variables such as independent set [34],
coloring [12, 27], and spin systems in general [23, 29,
24, 12, 27]; or each variable appears in at most two

constraints such as matching [2], edge cover [25], and
holant problems [35, 26] in general. In CNF formulas,
each variable may appear in multiple clauses and each
clause involves multiple variables. To handle this, one
recursion step in our computation tree has a two-layer
structure. In the first layer, we deal with different
occurrences of a variable using a similar idea for the
self-avoiding walk tree in [34]. In the second layer,
we deal with individual variables in each clause using
a similar computation tree as that in [25]. Then,
we prove a correlation decay property with respect to
this computation tree, which means that the nodes
in the computation tree that are far from the root
have little influence on the marginal probability of the
root. Based on this property, we can truncate the
computation tree and get a good estimation of the
marginal probability in polynomial time. The arising
of a two-layer group structure significantly complicates
the analysis. We introduce a sub-additivity argument
to deal with variables in different groups separately,
and carry out different treatments for groups with
different sizes. In particular, for groups with a super
constant size, we have to truncate them early in order
to keep the total size of the computation tree within
polynomial. To do that, we employ a stronger notion
called computationally efficient correlation decay, which
is introduced in [23] and also successfully used in [25].

Based on the same idea of alternating with a two-
layer recursion, we also provide FPTAS for an additional
counting CSP problem, which also implies an FPTAS
for 3D matching.

Theorem 1.2. There is an FPTAS for counting 3D
matchings of hypergraphs with maximum degree 4.

Note that the problem of counting hypergraph
matchings could be transformed into counting indepen-
dent sets over the line graph of the hypergraph, where
the vertices of the line graph are the hyperedges, and
two vertices have an edge if those two hyperedges in-
tersect. However, the two problems are not equiva-
lent when the maximum degree comes into play. For
instance, 3D matching with maximum degree 4 trans-
lates to counting independent sets with maximum de-
gree 9, for which no FPTAS in general is possible unless
P = NP . Still, by leveraging the locally clique-like
structure of line graphs with a two-layer recursion, we
have been able to show an FPTAS. In particular, in-
stead of alternating between clauses and variables as in
the CNF problem, the two-layer recursion here will al-
ternate between hyperedges and vertices. In addition,
what we will show under the Boolean Constraint Satis-
faction Problem (CSP) framework is actually a slightly
stronger result, where non-uniform hypergraph is also

1532 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



allowed.
Hypergraph matching (or set packing) can be

viewed as a dual problem of monotone CNF (or set
cover). In fact, all these problems are just special cases
in monotone Boolean CSP. Specifically, monotone CNF
is a CSP with the Boolean OR function as constraint,
and hypergraph matching is a CSP with the At-Most-
One constraint. Not only are they interesting counting
problems on their own, they also play important roles
in the classification of approximability for the bounded
degree Boolean #CSP [8]. We use #CSPd(Γ) to de-
note the problem of counting the number of solutions
for a Boolean CSP where all the constraints are from
Γ and each variable appears at most d times. Then
#CSPd(OR) is exactly our Read-d-Mon-CNF. As men-
tioned above, there is an FPTAS if d ≤ 5 and the prob-
lem is NP-hard if d ≥ 6. One could ask the same ques-
tion for other Γ and d. If d =∞, i.e. no degree bound,
then [9] gave a complete classification in terms of Γ:
the problem is NP-hard under randomized reduction,
#BIS-hard (as hard as approximately counting inde-
pendent sets for a bipartite graph), or polynomial time
computable even for exact counting. Basically, if we
believe these hardness assumptions, there is no inter-
esting approximable cases. The bounded degree case
was studied in [8], with a slightly technical assump-
tion: in addition to the constraints in Γ, two unary
constant constraints (pinning) are always available. We
write #CSPcd(Γ) for #CSPd(Γ) with this assumption.
They then studied the approximability of #CSPcd(Γ) in
terms of Γ and d. For d ≥ 6, a similar classification
as that of unbounded degree case was obtained. For
d ∈ {3, 4, 5}, a partial classification was also given in [8],
in which the monotone Boolean constraint stands out as
the only unknown case. It is also the only interesting
family in the sense that all other problems in the frame-
work #CSPcd(Γ) with d ≥ 3 are either hard (NP-hard
or #BIS-hard) to approximately count or polynomial
time computable even for exact counting. Thus, our
above FPTAS for Read-5-Mon-CNF falls in this inter-
esting range, and makes an important step towards a
full classification for #CSPcd(Γ). In section 5, we discuss
the implication of our FPTAS in the classification and
also obtain new hardness result and FPTAS for other
monotone Boolean #CSP problems. It is worth noting
that our two-layer recursion, with the newly developed
analysis technique for the CNF problem, are also used
to design and prove the additional FPTAS for a general
#CSP problem. This structure is indeed common for
general #CSP problems and the new techniques devel-
oped here may find applications in other problems.

Related Work The approach to designing FPTAS via
correlation decay is introduced in [1] and [34]. The most
successful example is for anti-ferromagnetic two-spin
systems [23, 29, 24], including counting independent
sets [34]. The correlation decay based FPTAS is beyond
the best known MCMC based FPRAS and achieves the
boundary of approximability [31, 11]. The approach
was also extended to count colorings and compute the
partition function of multi-spin system [12, 27].

Monotone CNF problem can also be viewed as hy-
pergraph independent set, where variables are vertices,
and clauses are hyperedges. Then a satisfying assign-
ment to a monotone CNF can be transformed into an
independent set by taking vertices whose corresponding
assignment are 0 (or False). There is also a beauti-
ful long line of research on designing FPRAS for ap-
proximate counting by sampling and most successfully
sampling by Markov chain. In particular for Read-d-
Mon-CNF with minimum clause size m, or equivalently,
for hypergraph independent set with maximum degree d
and minimum edge size m, an FPRAS for m ≥ d+2 ≥ 5
was shown in [3]. In terms of maximum clause size w,
an FPRAS for d = 3 and w = 2, 3 was shown in [5].
Other notable examples of sampling by Markov chain
include [18, 17, 19, 13, 6, 15, 33, 7, 10, 28].

For counting matchings, a Markov Chain Monte
Carlo (MCMC) based FPRAS is known for any
graph [16, 19], and deterministic FPTAS is only known
for graphs with bounded degree [2]. Hypergraph match-
ing problem is also known as set packing. More recently,
an independent result for approximately counting 3D
matchings was also obtained in [4] for hypergraph with
maximum degree 3.

2 Preliminary

Definition 2.1. (Read-d-Mon-CNF) A read d
times monotone CNF formula (Read-d-Mon-CNF) is a
CNF formula where every literal is positive occurrence
of some variable and each variable appears in at most
d clauses. Formally we write a monotone CNF formula
as C =

∧
j cj where cj =

∨
i xj,i, and xj,i are (not

necessarily distinct) variables.

A satisfying assignment for a CNF formula is an
assignment to the variables (True or False) such that
all clauses are satisfied. Counting the number of such
satisfying assignments is our main concern. We will use
numeric value 1 to indicate Boolean value True, and 0
for False.

We denote the occurrences of variable x in formula
C by dx(C), then C being Read-d is the same as
∀x, dx(C) ≤ d. Let |c| be the number of distinct
variables in a clause c, a singleton clause is a clause c

1533 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



with |c| = 1. A monotone CNF formula is well-formed if
each clause does not contain duplicate variables, there is
no singleton clause, and no clause is a subset of another.
Any Read-d-Mon-CNF formula can be re-written as a
well-formed Read-d-Mon-CNF formula.

A general Boolean constraint with arity k is a map-
ping C : {0, 1}k → {0, 1}. Two special unary con-
straints are called pinning: ∆0,∆1 defined by ∆0(0) =
1,∆0(1) = 0,∆1(0) = 0 and ∆1(1) = 1. Basically,
the constraints ∆0(x) and ∆1(x) fix the variable x to
be 0 and 1 respectively, which we call the variable is
pinned to 0 and 1 respectively. A Boolean constraint C
is monotone if ∀x,y ∈ {0, 1}k, x ≤ y ⇒ C(x) ≤ C(y).
The other direction of monotone is equivalent to this
after switching the name of 0 and 1. Thus, we focus
on this direction in the paper and our conclusion also
holds for the other direction by simply renaming 0 and
1. Except for those trivial constant functions and some
pinned variables, a monotone Boolean constraint can
always be re-written as a unique well-formed monotone
CNF [8].

Let Γ be a set of Boolean constraints and d > 0
be an integer, we use #CSPd(Γ) to denote the problem
of counting the number of solutions for a Boolean CSP
problem where each constraint is from the set Γ and
each variable appears in at most d constraints. We write
#CSPcd(Γ) , #CSPd(Γ ∪ {∆0,∆1}), where ∆0 and ∆1

are always assumed to be available.
We will also treat a CNF formula as a set of clauses,

and a clause as a set of variables, and define some
set operations for the CNF formula C =

∧
j cj , clause

c =
∨
i xi, and variable x as follows:

• c \ x ,
∨
i:xi 6=x xi, the occurence of x in c (if any)

is pinned to 0;

• C \ c ,
∧
j:cj 6=c cj , remove the clause c from C;

• C ∪ c ,
(∧

j cj

)
∧ c , add a clause c to C;

• C \ x ,
∧
j (cj \ x) , the variable x is pinned to 0

in the entire formula C.

We will also write C \{x, y} , (C \x)\y. In general
we use n to refer to the number of variables, and m for
the number of clauses (or constraints). We use 1 for
the all-one vector, and a d-dimensional vector t is also
written as {ti}di=1, with the i-th coordinate being ti, so
{ti} = 0 means ∀i, ti = 0. For an ascendingly ordered
sequence {wi} where wi ≤ wj for any i ≤ j, we write
w = {wi} rather than simply as a vector. We also write
t \ {td} , {t1, t2, . . . , td−1} as a (d − 1)-dimensional
vector after projection.

3 The Algorithm

Given a monotone CNF formula C, let X(C) be the set
of all satisfying assignments for C. We associate a uni-
form distribution on X(C), which induces a marginal
probability PC(x = 0): the probability that x is as-
signed to be 0 (False) if we take a satisfying assignment
from X(C) uniformly at random. We use R(C, x) to

denote its ratio: R(C, x) , PC(x=0)
PC(x=1) . In this section,

we shall give an algorithm to compute these marginal
probabilities and count the size of X(C).

3.1 Recursion First we prove a recursive relation
which relates R(C, x) to that of smaller instances.

Let d , dx(C), and the d clauses containing x

be enumerated as {cj}dj=1. Denote wj , |cj | − 1,

Cj ,
(
C \ {ck}k 6=j

)⋃
{ck \ x | j + 1 ≤ k ≤ d}. Let

{xj,i}wji=1 be the set of variables in cj \ x, and Cj,i ,

(Cj \ cj) \ {xj,k}i−1
k=1.

As a remark, Cj is obtained from C by pinning
the occurrences of x in c1, c2, · · · , cj−1 to 1 (and these
clauses are thus removed since they have been satisfied)
and the occurrences of x in cj+1, cj+2, · · · , cd to 0 (and
thus we simply remove variable x from these clauses).
Cj,i is further obtained from Cj by removing clause cj
and pinning xj,1, xj,2, · · · , xj,i−1 (all occurrences) to 0.

Alternatively viewing C as a set cover instance, x is
a set containing {ck}dk as elements, Cj is obtained from
C by first removing elements c1, c2, · · · , cj−1 entirely,
and then removing elements cj+1, cj+2, · · · , cd only from
the set x. Then Cj,i is to remove element cj , and then
the sets xj,1, xj,2, · · · , xj,i−1 from Cj .

Lemma 3.1.

(3.1) R(C, x) =
d∏
j=1

(
1−

wj∏
i=1

R(Cj,i, xj,i)

1 +R(Cj,i, xj,i)

)
.

Proof. If d = 0, x is entirely a free variable, so R(C, x) =
1, and recall that we adopt the convention that if d = 0,
the product is also 1. If wj = 0 for some j ≤ d, the
clause cj is a singleton with variable x. As a result,
x = 1 and thus R(C, x) = 0. In this case, the identity is
also true since the j-th internal product is 1 for wj = 0
and we get R(C, x) = 0.

In the following, we assume d ≥ 1 and wj ≥ 1
for j = 1, 2, · · · , d. Note that in this case all the new
instances Cj,i are well-defined monotone CNF formulas.
We substitute the d occurrences of x with d independent
new variables {x̃j}dj=1 (the occurrence of x in cj is

replaced by x̃j), and denote this new CNF formula by
C ′. We have

1534 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



R(C, x) =
PC(x = 0)

PC(x = 1)
=

PC′ ({x̃j} = 0)

PC′ ({x̃j} = 1)

=
d∏
j=1

PC′
(
{x̃i}j−1

i=1 = 1, {x̃i}di=j = 0
)

PC′
(
{x̃i}ji=1 = 1, {x̃i}di=j+1 = 0

)
=

d∏
j=1

R(Cj , x̃j).

Now we further expand R(Cj , x̃j). Since x̃j is a
newly introduced variable, it only appears once in Cj
which is in cj . As wj = |cj | − 1, {xj,i}wji=1 is the set of
variables in cj \ x̃j , using the fact that cj is a monotone
clause and x̃j does not appear in other clauses, we have

R(Cj , x̃j) =
PCj (x̃j = 0)

PCj (x̃j = 1)

=1− PCj\cj
(
{xj,i}wji=1 = 0

)
=1−

wj∏
i=1

PCj,i (xj,i = 0) ,

By substituting PCj,i (xj,i = 0) =
R(Cj,i,xj,i)

1+R(Cj,i,xj,i)
, this

concludes the proof.

For all new instances R(Cj,i, xj,i) involved in the
recursion, one occurrence of xj,i in the original formula
C (which is in cj) is eliminated in Cj,i as we have
removed cj from C to get Cj,i. Therefore, for Read-
5-Mon-CNF C, dxj,i(Cj,i) ≤ 4. In other words, the
recursion with d = 5 is invoked no more than once,
which would be at the initial step.

Proposition 3.1. R(C, x) ≤ 1.

Proof. Since C is a monotone CNF, a satisfying as-
signment with x = 0 can be injectively mapped to
a satisfying assignment with x = 1, thus we have
P(x = 0) ≤ P(x = 1).

3.2 Truncated Computation Tree In the recur-
sion (3.1) of Lemma 3.1, we can recursively expand
these R(Cj,i, xj,i) to those of smaller instances un-
til we reach trivial instances, which yields a compu-
tation tree to compute R(C, x). However, the total
size of the computation tree can be exponential. Here
we estimate by truncating it up to recursion depth
L. Formally, for a Read-5-Mon-CNF C, a variable
x with d , dx(C) and a non-negative integer L, let
Rj,i , R (Cj,i, xj,i, max (0, L− dlog4(wj + 1)e)), we
recursively define and compute R(C, x, L) as:

R(C, x, L) =


0, if wj = 0 for some j;

1, if d = 0 or L = 0;∏d
j=1

(
1−

∏wj
i=1

Rj,i
1+Rj,i

)
, if 1 ≤ d ≤ 5.

The recursion depth L used here is known as M -
based depth introduced in [23] with M = 4. As for
the computation tree, another view of the recursion
depth L is we replace every node with a branching
degree greater than 4 with a 4-ary branching subtree.
Now it is easy to see that the nodes involved in the
branching computation tree up to depth L are at most
O((4d)L) = O(16L), and for second-to-base-case nodes
(i.e. nodes with 0 < L ≤ dlog4 (d+ 1)e ) they involve
at most O(n) extra base cases, so the running time for
the algorithm to compute R(C, x, L) is O(n16L).

Recall that since the d = 5 case is invoked only once,
then the algorithm keeps exploring the recursion with
1 ≤ d ≤ 4 until it hits one of the three boundary cases,
namely either wj = 0 for some j, or d = 0 or L = 0. We
remark that the two boundary cases d = 0 and wj = 0
for some j can be covered by the recursion automatically
as we define an empty product to be 1. The values
for these boundary cases are indeed accurate (equal to
R(C, x)) and we list them out separately to be more
explicit. For another boundary case L = 0, we choose
the value 1 here which is an arbitrary guess. Indeed any
number between 0 and 1 works, as we shall prove the
correlation decay property, which states that the value
for R(C, x, L) with large L is almost independent with
the choice of these values for L = 0. Formally, we have
the following key lemma, for which the proof is laid out
in Section 4.

Lemma 3.2. (Correlation decay) Let α = 0.981,
C be a Read-5-Mon-CNF formula and x be a variable
of C. Then

(3.2) |R(C, x, L)−R(C, x)| ≤ 5
√

6αL.

3.3 Counting Algorithm With these truncated
marginal probability ratios R(C, x, L), we derive our
counting algorithm. Let Z(C) be the number of satis-
fying assignments of C, and {xi}ni=1 be an enumeration
of variables in any order in a Read-5-Mon-CNF C. As a
monotone CNF, {xi}ni=1 = 1 is a satisfying assignment.
Now with {xi}ni=1 sampled uniformly, P({xi}ni=1 = 1)
has two expressions:

P ({xi}ni=1 = 1) =
1

Z(C)
,

1535 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



P ({xi}ni=1 = 1) =

n∏
i=1

PC
(
xi = 1 | {xj}i−1

j=1 = 1
)

=
n∏
i=1

PCi (xi = 1) ,

where C1 = C and Ci+1 is obtained from Ci by pinning
xi to 1 for i = 1, 2, · · · , n − 1. By substitution and
PCi (xi = 1) = 1

1+R(Ci,xi)
, we get

Z(C) =
n∏
i=1

(1 +R(Ci, xi)) .

Hence we also get Z(C,L) ,
∏n
i=1 (1 +R(Ci, xi, L)) as

an estimation for Z(C). By correlation decay Lemma
3.2, we will show that

Theorem 3.1. Let 0 < ε < 1, C be a Read-5-Mon-

CNF with n variables, L = logα

(
ε

10
√

6n

)
. Then

Z(C,L) is the desired FPTAS for Z(C) with running

time O
(
n2
(
n
ε

)log1/α(16)
)

.

Since it is a standard procedure to carry out the
proof details, we leave it to the appendix.

4 Correlation Decay

In this section, we shall prove Lemma 3.2, the key cor-
relation decay lemma. To prove such an exponential
correlation decay property, the most common method
is to use induction and prove that the error is decreased
by a constant factor along each recursion step. Unfortu-
nately, this is not true in our case. Instead we perform
an amortized analysis on the decay rate by a potential
function. We choose ϕ(x) , 2 sinh−1 (

√
x) to map the

values R(C, x, L), R(C, x) into a new domain and prove
the following inequality after mapping:

(4.3) |ϕ ◦R(C, x, L)− ϕ ◦R(C, x)| ≤ 5αL.

The fact that condition (4.3) =⇒ (3.2) is due to Mean
Value Theorem. Since 0 ≤ R(C, x, L), R(C, x) ≤ 1, we
have 0 ≤ ϕ ◦ R(C, x, L), ϕ ◦ R(C, x) < 2. As a result,
∃ȳ : 0 ≤ ȳ < 2 such that

|R(C, x, L)−R(C, x)|

=
∂ϕ−1(y)

∂y

∣∣∣
y=ȳ
· |ϕ ◦R(C, x, L)− ϕ ◦R(C, x)|

≤
√

6 · 5αL = 5
√

6αL,

where the inequality uses the fact that ∂ϕ−1(y)
∂y =√

y(1 + y) <
√

6 for 0 ≤ y < 2.
Since the case dx(C) = 5 is applied at most once

at the root, we have dx(C) ≤ 4 for all the other nodes.

Hence we first prove the following stronger bound for
the dx(C) ≤ 4 case:

(4.4) |ϕ ◦R(C, x, L)− ϕ ◦R(C, x)| ≤ 2αL.

The fact that (4.4) =⇒ (4.3) shall be shown later in
(4.6). Now we prove (4.4) by induction on L. For the
base case L = 0, since 0 ≤ ϕ◦R(C, x, L), ϕ◦R(C, x) < 2,
it is clear that |ϕ ◦R(C, x, L)− ϕ ◦R(C, x)| < 2.

Supposing the induction hypothesis holds for L < l,
we prove it is true for L = l. If x is a free variable
in C, i.e. d = 0, R(C, x, L) = R(C, x) = 1. And
if x can be inferred (due to wj = 0 for some j),
R(C, x, L) = R(C, x) = 0. In the following, we assume
that 1 ≤ d ≤ 4 and wj ≥ 1.

Denote h(r) ,
∏d
j

(
1−

∏wj
i

rj,i
1+rj,i

)
, which is

the analytic version of the recursion. Let y
be the true vector with yj,i = ϕ ◦ R (Cj,i, xj,i)
and ŷ be the estimated vector with ŷj,i = ϕ ◦
R (Cj,i, xj,i, max(0, L− dlog4(wj + 1)e)). We abuse

notations here and denote r , ϕ−1(y) for rj,i =
ϕ−1(yj,i), which is applying ϕ−1 entry-wise to y, sim-

ilarly for r̂ , ϕ−1(ŷ). Then ϕ ◦ R(C, x, L) = ϕ ◦ h(r)
and ϕ ◦R(C, x) = ϕ ◦ h(r̂).

Now by Mean Value Theorem, ∃γ : 0 ≤ γ ≤ 1, ỹ =
γy + (1− γ)ŷ such that, let r̃ , ϕ−1(ỹ),

ϕ ◦R(C, x, L)− ϕ ◦R(C, x)

=
∑
a,b

∂(ϕ ◦ h ◦ ϕ−1)

∂ya,b

∣∣∣
y=ỹ
· (ŷa,b − ya,b)

=
∑
a,b

Φ(h(r̃))

Φ(r̃a,b)

(
∂h

∂r̃a,b

∣∣∣
r=r̃

)
· (ŷa,b − ya,b),

where Φ(x) , dϕ(x)
dx = 1√

x(1+x)
. Now by induction

hypothesis, we have

|ŷa,b−ya,b| ≤ 2αmax(0,L−dlog4(wa+1)e) ≤ 2αL−dlog4(wa+1)e.

Substituting this into the above equation, we have

|ϕ ◦R(C, x, L)− ϕ ◦R(C, x)|

≤2αL
∑
a,b

Φ(h(r̃))

Φ(r̃a,b)

∣∣∣ ∂h
∂r̃a,b

∣∣∣α−dlog4(wa+1)e.

Let w = {wa}da=1, it is sufficient to show that the
amortized decay rate

κ̂
w
d (r) ,

∑
a,b

Φ(h(r))

Φ(ra,b)

∣∣∣ ∂h
∂ra,b

∣∣∣α−dlog4(wa+1)e ≤ 1

for any d ≤ 4, w ≥ 1, and 0 ≤ {ra,b}1≤a≤d,1≤b≤wa ≤ 1.
There are several difficulties to prove this inequality.

1536 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



First of all, the variables {ra,b} are not totally symmet-
ric: there are d groups with the a-th group again has
wa variables. Secondly, the term α−dlog4(wa+1)e is a dis-
continuous function, which behaves quite differently for
small or large was. To overcome these difficulties and
carry out the proof, we introduce some new proof ideas
and the following is an outline:

• In Proposition 4.1, we show that in the worst
case the two-layer decay rate κ̂d is equivalent to a
single-layer rate κd, via Karamata’s Inequality [20].
Basically, for each group of variables {ra,b}wab=1, the
maximum is achieved when all but one variables
take the boundary value 1.

• We show this artificial single-layer rate is sub-
additive in Proposition 4.2, which enables separat-
ing groups with larger wa from smaller ones, and
dealing with them separately.

• Finally, with careful numerical analytics on small
and large groups respectively in Proposition 4.3,
we complete the proof by combining them with
Proposition 4.2.

Before detailing the proof, we first do a change
of variables to simplify notations. Let t̂j,i , rj,i

1+rj,i
,

which is just the marginal probability as rj,i is the
ratio of marginal probability. Then 0 ≤ t̂j,i ≤ 1

2 ,

function h becomes ĥ(̂t) ,
∏d
j

(
1−

∏wj
i t̂j,i

)
. Also let

αwa , α−dlog4(wa+1)e, the function κ̂ becomes

κ̂
w
d (̂t) ,

∑
a,b

Φ(h(r))

Φ(ra,b)

∣∣∣∣ ∂h∂ra,b

∣∣∣∣αwa
=

√
ĥ(̂t)

1 + ĥ(̂t)
·
d∑
a=1

αwa
∏wa
i t̂a,i

1−
∏wa
i t̂a,i

·
wa∑
b=1

1− t̂a,b√
t̂a,b

where w is the ascending ordered sequence {wa}da=1.
Next we introduce the single-layer rate κd,

κ
w
d (t) ,

√√√√√ ∏d
j

(
1− tj

2wj−1

)
1 +

∏d
j

(
1− tj

2wj−1

)
(4.5)

d∑
a=1

ta
2wa−1

1− ta
2wa−1

·
(

1− ta√
ta

+
wa − 1√

2

)
αwa .

Note that κd is essentially fixing for each a and each
b > 1, t̂a,b = 1

2 , leaving only t̂a,1 free in κ̂d and renamed

as ta . Clearly maxt

{
κ
w
d (t)

}
≤ maxt̂

{
κ̂
w
d (t̂)

}
, we prove

they are indeed equal.

Proposition 4.1. maxt

{
κ
w
d (t)

}
= maxt̂

{
κ̂
w
d (t̂)

}
.

Proof. We only need to prove that for any t̂, there
exist a t such that κ

w
d (t) ≥ κ̂

w
d (t̂). For any given t̂,

we define t̃ and t as follows: for each a, t̃a,b = 1
2

for b > 1 and ta = t̃a,1 = 2wa−1
∏wa
b=1 t̂a,b. By

definition, we have
∏wa
b=1 t̂a,b =

∏wa
b=1 t̃a,b for each a

and κ
w
d (t) = κ̂

w
d (t̃). Thus, it is sufficient to prove that

κ̂
w
d (t̂) ≤ κ̂

w
d (t̃). By the expression of κ̂

w
d and the fact

that
∏wa
i=1 t̂a,i =

∏wa
i=1 t̃a,i, we only need to prove that

for each a = 1, 2, · · · , d,

wa∑
b=1

1− t̂a,b√
t̂a,b

≤
wa∑
b=1

1− t̃a,b√
t̃a,b

.

We shall prove this by Karamata’s Inequality [20], which
is the opposite direction of Jensen’s Inequality. First
we do a change of variables. For a fixed a, let pb ,
ln(t̂a,b), qb , ln(t̃a,b) and f(x) , 1−ex√

ex
, clearly we have∑

b=1 pb = ln(
∏
b t̂a,b) = ln(

∏
b t̃a,b) =

∑
b=1 qb, and our

goal is

wa∑
b=1

1− t̂a,b√
t̂a,b

=

wa∑
b=1

f(pb) ≤
wa∑
b=1

f(qb) =

wa∑
b=1

1− t̃a,b√
t̃a,b

.

Since the second derivative f ′′(x) = 1−ex
4
√
ex

> 0 for

x ≤ ln 1
2 , f is strictly convex. Thus the above inequality

immediately follows from Karamata’s Inequality and
the fact that the sequence {qb}wab=1 always majorizes
{pb}wab=1 after both being reordered in descending order.

In light of this, instead of κ̂d we consider the
simplified amortized decay rate κd . Denote

T (t, k) ,
t

2k−1

1− t
2k−1

(
1− t√
t

+
k − 1√

2

)
,

ĥ(t, k) , 1− t

2k−1
,

g(h) ,

√
h

1 + h
,

ĝ , g(

d∏
j

ĥ(tj , wj)).

Clearly κ
w
d (t) can be re-written as κ

w
d (t) = ĝ ·∑d

a
T (ta,wa)

αdlog4(wa+1)e .

Proposition 4.2. (Sub-additivity)

κ
w
d (t) ≤ κw\(wa)

d−1 (t \ {ta}) + κ
(wa)
1 ({ta}).

1537 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Proof. First note that g(h) is monotonically increasing,

and by ĥ(tj , wj) ≤ 1, we have ∀a,

d∏
j

ĥ(tj , wj) ≤ ĥ(ta, wa),

d∏
j

ĥ(tj , wj) ≤
d∏
j 6=a

ĥ(tj , wj),

thus ∀a,

ĝ ≤ g(ĥ(ta, wa)) and ĝ ≤ g(

d∏
j 6=a

ĥ(tj , wj)).

Hence ĝ ·
∑d
j

T (tj ,wj)

αdlog4(wj+1)e ≤ g(ĥ(ta, wa)) · T (ta,wa)

αdlog4(wa+1)e +

g(
∏d
j 6=a ĥ(tj , wj)) ·

∑d
j 6=a

T (tj ,wj)

αdlog4(wj+1)e .

Proposition 4.3. (Numerical Bounds) For any t
with 0 ≤ t ≤ 1

2 ,

• If w < 4, it holds that κ
w
4 (t) < 1, κ

w
3 (t) < 0.85,

κ
w
2 (t) < 0.67, κ

w
1 (t) < 0.42.

• If w1 ≥ 4, it holds that κ
(w1)
1 (t) < 0.14.

The proof of this proposition is quite complicated and
involves many case-by-case analysis, which we defer to
the appendix.

Now we are ready to complete the rest of the proof
for Lemma 3.2.
Proof of Lemma 3.2. Given the bound (4.4), the case
where dx(C) = 5 immediately follows by Proposition 4.3

that κ
(w)
1 (t) < 1

2 , and Proposition 4.2,

|ϕ ◦R(C, x, L)− ϕ ◦R(C, x)| ≤κw5 (t) · 2αL(4.6)

≤5κ
(w)
1 (t) · 2αL

≤5αL.

It remains to combine the small-degrees and large-
degrees of w and get κ

w
d (t) < 1 for d ≤ 4.

We choose M = 4, let w+ be the sub-sequence of
those large entries (i.e. any entry greater or equal to
M) in w , and similarly for w−, or formally,

w+ , {wj : wj ≥M} and w− , {wj : wj < M} ,

t+ , {tj : wj ≥M} and t− , {tj : wj < M} .

Next we combine them case by case by Proposition
4.3 and 4.2.

• No entry of w is large, i.e. w < M. We have
κ
w
d (t) < 1 for d = 1, 2, 3, 4;

• All entries of w are large, i.e. w ≥ M. We have

κ
w
d (t) ≤ 4κ

(w+
a )

1 ({t+a }) < 4 · 0.14 < 1;

• Three entries of w are large. Since d = 3 is the
same to the above, we assume d = 4. κ

w
4 (t) ≤

3κ
(w+
a )

1 ({t+a }) + κ
(w−a )
1 ({t−a }) ≤ 3 · 0.14 + 0.42 < 1;

• Two entries of w are large. κ
w
4 (t) ≤ 2κ

(w+
a )

1 ({t+a })+
κ
w−

2 (t−) < 2 · 0.14 + 0.67 < 1, and κ
w
3 (t) ≤

2κ
(w+
a )

1 ({t+a }) + κ
w−

1 (t−) < 2 · 0.14 + 0.42 < 1;

• One entry of w is large. κ
w
4 (t) ≤ κ

(w+
a )

1 ({t+a }) +

κ
w−

3 (t−) < 0.14 + 0.85 < 1,

κ
w
3 (t) ≤ κ(w+

a )
1 ({t+a }) +κ

w−

2 (t−) < 0.14 + 0.67 < 1,

κ
w
2 (t) ≤ κ(w+

a )
1 ({t+a }) +κ

w−

1 (t−) < 0.14 + 0.42 < 1.

5 Bounded Degree Boolean #CSP

In this section, we take a broader view to introduce the
study the approximability of #CSPcd(Γ) in terms of Γ
and d. For d ≥ 6, [8] gave a complete classification
in terms of Γ: the problem is NP-hard under random-
ized reduction, #BIS-hard (as hard as approximately
counting independent sets for a bipartite graph), or in
FP even for exact counting. Basically, there is no in-
teresting approximable cases under these hardness as-
sumptions. Thus, we focus on these d ∈ {3, 4, 5}. In
particular, our algorithm for monotone CNF with d = 5
falls in this range and gives an interesting approximable
family. A partial classification for d ∈ {3, 4, 5} was also
given in [8], and the monotone constraints are the only
unknown case.

As already discussed in [8], any monotone Boolean
constraint can be written as a monotone CNF. Specif-
ically, except for a few trivial cases, the expression is
unique if only well-formed CNF is used. They also in-
troduced the notion of variable rank k, which is the
maximum occurrence in terms of CNF clauses within
a monotone Boolean constraint in Γ. They then show
that

Read-d-Mon-CNF ≤AP #CSPcd(Γ),

and
#CSPcd(Γ) ≤AP Read-kd-Mon-CNF.

A ≤AP B is the approximation-preserving reduction,
which means that if there is an approximate counting
algorithm for problem B, then there is also an approx-
imate counting algorithm for problem A. Therefore,
our above FPTAS for Read-5-Mon-CNF made an im-
portant step towards a full classification for #CSPcd(Γ).
In particular, if k = 1 we have a complete dichotomy.
For k ≥ 2, there is still gap in between if d ≤ 5 while
kd ≥ 6, for which we identify two fundamental families
of constraints. Consider the unique well-formed CNF
of such a constraint, there is a variable x that appears

1538 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



in at least two clauses c1, c2. Since they are not sin-
gleton and no one is a subset of the other, we can find
two variables, y from c1, z from c2, such that y does
not appear in c2 and z does not appear in c1. For well-
formed monotone CNF, there is a suitable pinning for
all other variables to isolate these three variables. Af-
ter pinning, at least two clauses remain: x∨ y obtained
from c1 and x ∨ z from c2. All other possible clauses
are y ∨ z. If it is not present, denote the constraint by
S2(x, y, z) = (x∨ y)∧ (x∨ z); if y ∨ z is present, denote
it by K3(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z). These
structures can be generalized to higher arity with larger
variable rank as Sk(x, y1, y2, · · · , yk) =

∧k
i=1(x∨yi) and

Ks(x1, x2, · · · , xs) =
∧

1≤i<j≤s(xi ∨ xj). Thus it is cru-
cial to understand the approximability of these two fam-
ilies. We investigate and get the following FPTAS and
hardness result.

Theorem 5.1. There is an FPTAS for #CSPc3(K4).

As a remark, this is a slightly more general prob-
lem of 3D matching problem, where non-uniform hy-
peredges are also allowed. Again, if we expand out the
constraints K4 in a #CSPc3(K4) instance to monotone
CNF formulas, we get a Read-9-Mon-CNF. Although
approximately counting Read-9-Mon-CNF in general is
hard, we get an FPTAS for this sub-family by leveraging
the locally clique-like structure of Ks. Thus, besides the
degree d, variable rank k, one needs to study the inner
structure of a monotone constraint Γ to determine its
approximability.

Theorem 5.2. There is no FPTAS (or FPRAS) for
#CSP c5 (S2) unless NP = RP .

This hardness result is proved by simulating the re-
duction for #CSP6(OR2) in [30]. If the same hard-
ness result is also proved for #CSP c5 (K3), one obtains
a complete classification for #CSPcd(Γ) with d ≥ 5,
based on our above discussion. However, the same idea
to simulate the reduction for #CSP6(OR2) does not
work. Specifically, a bi-partite gadget plays a crucial
role for the reduction in [30] while K3 is inherently not
bi-partite. We leave the full classification for #CSPcd(Γ)
as an interesting and important open question.

5.1 FPTAS for #CSPc3(K4) The constraint Kd

states that at most one variable can be assigned as 0.
Such At-Most-One constraint is exactly the matching
constraint: every edge e corresponds to a variable xe,
and a matching M with e ∈M corresponds to an assign-
ment that assigns xe = 0, and every vertex with degree
d is a constraint Kd involving its d neighboring edges.
As a result, #CSPc2(Kd) is essentially counting match-
ings in graphs of maximum degree d. And #CSPc3(K4)

contains 3 dimensional matching over graphs with max-
imum degree 4 as a special case.

Due to pinning, we have #CSPc3(K4) ≡
#CSPc3({K4,K3,K2,K1}), where K1(x) is satisfied for
both x = 0, 1. One can always normalize (in polynomial
time) C in #CSPc3({K4,K3,K2,K1}) to a new instance
without pinning i.e. C ′ in #CSP3({K4,K3,K2,K1}),
unless we can easily decide that C is not satisfiable.
First we deal with variables that are pinned to 0. If
a constraint Ks has at least two variables (including
two occurrences of a same variable) pinned to 0, then
it is not satisfiable. If only xi in Ks(x1, x2, · · · , xs) is
pinned to 0, all other variables {xj}sj 6=i must be 1. So
we pin them to 1 and remove this constraint. If a vari-
able appears more than once in a same constraint, it
must be 1 and we add a pinning to 1 to it. Now it
only remains to tackle variables that are pinned to 1.
If xi in Ks(x1, x2, · · · , xs) is pinned to 1, we simply
replace the constraint with Ks−1({xj}sj 6=i). It is obvi-
ous that the underlying Boolean function remains un-
changed after normalizing, hence so does the number of
satisfying assignments. Since the pinned variables are
constants and do not appear in any constraints after
normalizing, we simply remove them and no longer see
them as variables of the instance. Also after normal-
izing there are no duplicate variables in a same con-
straint. Now we assume the given instance C is already
in #CSP3({K4,K3,K2,K1}) as we will also perform
this process during the algorithm.

Overall we carry out a similar scheme as that
for monotone CNF: first show the recursion for
#CSP cd (Ks) after preprocessing, and prove correlation
decay up to d = 3, s = 4. Here we re-use the same set
of notations for the same concept but under the setting
of #CSP c3 (K4). Given a #CSP cd (Ks) instance C, we
associate the set of satisfying assignments with a uni-
form distribution, and consider the ratio of marginal

probability R(C, x) , PC(x=0)
PC(x=1) .

Let C be a normalized instance of
#CSP3({K4,K3,K2,K1}) and d constraints containing

x be enumerated as {cj}dj=1. Denote wj , |cj | − 1,

{xj,i}wji=1 as the set of variables in cj except x, Cj
be obtained from C by pinning the occurrences of x
in c1, c2, · · · , cj−1 to 1 and the occurrences of x in
cj+1, cj+2, · · · , cd to 0 , Cj,i be further obtained from
Cj by removing clause cj and pinning variables xj,k
with k 6= i (all occurrences) to 1.

Lemma 5.1.

R(C, x) =

d∏
j=1

1

1 +
∑wj
i=1R(Cj,i, xj,i)

.

Proof. If d = 0, x is a free variable and R(C, x) = 1.

1539 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



If d ≥ 1, we substitute the d occurrences of variable x
with d independent variables {x̃j}dj=1, and denote this

new #CSP cd (Ks) by C ′. Then we have

R(C, x) =
PC(x = 0)

PC(x = 1)

=
PC′ ({x̃j} = 0)

PC′ ({x̃j} = 1)

=
d∏
j=1

PC′
(
{x̃i}j−1

i=1 = 1, {x̃i}di=j = 0
)

PC′
(
{x̃i}ji=1 = 1, {x̃i}di=j+1 = 0

)
=

d∏
j=1

R(Cj , x̃j).

Recall that cj is the constraint where x̃j resides,
{xj,i}wji=1 is the set of variables in cj except x̃j ,

R(Cj , x̃j) =
1

1 +
∑wj
k

PCj ({xj,i}
wj
i:i6=k=1,xj,k=0)

PCj ({xj,i}
wj
i=1=1)

=
1

1 +
∑wj
i=1R(Cj,i, xj,i)

.

Note that R(Cj , x̃j) = 1 for wj = 0, so the above is still
true. Hence by substitution the proof is concluded.

Similarly, we can conclude that dxj,i(Cj,i) ≤ 2 since
one occurrence of xj,i has been eliminated. This is
still true after normalizing Cj,i. Since we only pin
some occurrences of x to 0 which is no longer a vari-
able for Cj,i, Cj,i must be satisfiable. After nor-
malizing, xj,i may be pinned to 1, in which case we
have R(Cj,i, xj,i) = 0. Otherwise, xj,i is not pinned
in normalized Cj,i, and we continue to expand these
R(Cj,i, xj,i) by the above recursion and get a computa-
tion tree for R(C, x). Similarly, by truncating the above
recursion to depth L we get an algorithm for estimat-
ing the ratio of marginal probability with running time
O(6L). Let d , dx(C), Rj,i = R (Cj,i, xj,i, L− 1),

R(C, x, L) =


0, x is pinned to 1;

1, d = 0 or L = 0;∏d
j=1

1
1+

∑
i=1 Rj,i

, 1 ≤ d ≤ 3.

Similar to the CNF problem, we also prove correlation
decay and obtain an FPTAS for #CSP c3 (K4).

Lemma 5.2. Let α = 0.99, C be an instance of
#CSP c3 (K4) and x be a variable of C. Then

(5.7) |R(C, x, L)−R(C, x)| ≤ 4
√

6αL.

The overall structure to prove this lemma and then
Theorem 5.1 is the same as that for monotone CNF.

Proposition 5.1. (Amortized Decay Condition)
Let d ≤ 2, wj ≤ 3 for 1 ≤ j ≤ d, 0 ≤ rj,i ≤ 1 for

1 ≤ j ≤ d and 1 ≤ i ≤ wj, h(r) ,
∏d
j=1

1

1+
∑wj
i=1 rj,i

,

and Φ(x) = 1√
x(x+1)

. Then

κ̂
w
d (r) ,

∑
j,i

Φ(h(r))

Φ(rj,i)

∣∣∣∣ ∂h∂rj,i
∣∣∣∣

=
1√

1 +
∏d
k(1 +

∑wk
i=1 rk,i)

d∑
j=1

∑wj
i=1

√
rj,i(1 + rj,i)

(1 +
∑wj
i=1 rj,i)

satisfies the following condition

(5.8) κ̂
w
d (r) < 0.99.

Here we also have a two-layer structure for variables
{rj,i}. Similarly, we first show a reduction to a single-
layer decay rate κd in Proposition 5.2. Unlike before,
here we use Jensen’s Inequality to show that the worse
case is achieved when the variables in the same group
have the same value. We then also prove sub-additivity
in Proposition 5.3.

Proposition 5.2. For every r′ ,
{
r′j,i
}

, there exists

r , {rj} such that

κ̂
w
d (r′) ≤ κwd (r) ,

1√
1 +

∏d
k(1 + wkrk)

d∑
j=1

wj
√
rj(1 + rj)

(1 + wjrj)
.

Proof. Let rj = 1
wj

∑wj
k=1 r

′
j,k, by Jensen’s Inequality,

and f(x) ,
√
x(1 + x) is concave,(

∀j,
wj∑
i=1

f(r′j,i) ≤ wjf(rj)

)
=⇒ κ̂

w
d (r′) ≤ κwd (r).

And also sub-additivity:

Proposition 5.3. κ
w
d (r) ≤

∑d
j=1 κ

(wj)
1 (rj).

Proof. Since ∀j,
∏d
k(1 + wkrk) ≥ 1 + wjrj ,

1√
1 +

∏d
k(1 + wkrk)

d∑
j=1

wj
√
rj(1 + rj)

(1 + wjrj)

≤
d∑
j=1

1√
1 + (1 + wjrj)

wj
√
rj(1 + rj)

(1 + wjrj)
.

1540 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Proof of Proposition 5.1.
By Proposition 5.2, it is sufficient to prove κ

w
d (r) <

0.99 for d = 1, 2, and ∀j, wj ≤ 3.
Case d = 1: κ1 itself is a function over single variable,
by simple calculus we have,

κ
(1)
1 (r) < 0.41, κ

(2)
1 (r) ≤ 0.5, κ

(3)
1 (r) < 0.58.

Case d = 2, w1 = w2 = c: Let pj = ln(1 + crj), p
′ =∑d

j=1 pj

d , fc(p) , e−p
√

(ep − 1) (c+ ep − 1), r′ = ep
′
−1
c .

By Jensen’s Inequality and fc(p) is concave for c ≥ 1
and 0 ≤ p ≤ ln(1 + c), let

κ̄
(c,c)
d (r′) ,

cd
√
r′(1 + r′)

(1 + cr′)
√

1 + (1 + cr′)d
,

we have

d∑
j=1

f(pj) ≤ df(p′) =⇒ κ
(c,c)
d (r) ≤ κ̄(c,c)

d (r′).

Note that κ̄
(c,c)
2 (r) is again a single-variate func-

tion, by simple calculus, κ̄
(3,3)
2 (r) < 0.98, κ̄

(2,2)
2 (r) <

0.83, κ̄
(1,1)
2 (r) < 0.651.

Case w = (1, 2): By sub-additivity κ
(1,2)
2 (r) ≤

κ
(2)
1 (r1) + κ

(1)
1 (r2) < 0.91.

Case w = (1, 3): By sub-additivity κ
(1,3)
2 (r) ≤

κ
(3)
1 (r1) + κ

(1)
1 (r2) < 0.99.

Case w = (2, 3): By Karush Kuhn Tucker (KKT)

conditions, the maximal value of κ
(2,3)
2 (r) is attained

either on the boundary, or at stationary points. Clearly

if r1 = 0 or r2 = 0 then κ
(2,3)
2 (r) is reduced to case

d = 1. If r1 = 1, let f(r) , κ
(2,3)
2 ({1, r}), we have

f(r) =
3
√

2

4
√

8r + 5
+

2
√
r(r + 1)

(2r + 1)
√

8r + 5

≤3
√

2

4
√

5
+

√
8x

(2r + 1)
√

8r + 5
.

Note that 3
√

2
4
√

5
< 0.48, and

√
8x

(2r+1)
√

8r+5
< 0.36 with

r = 1
32

(√
185− 5

)
attaining its maximal. In all, on the

boundary where r1 = 1, we have κ
(2,3)
2 ({1, r}) < 0.84.

Now consider stationary points, the partial deriva-

tive with respect to r1 is:

∂κ
(2,3)
2 ({r1, r2})

∂r1

=
1

2
√
r1(r1 + 1)(3r1 + 1)2(6r1r2 + 3r1 + 2r2 + 2)3/2(

6 + 6r2 − 6
√
r1(r1 + 1)

√
r2(r2 + 1)

−3r1

(
12
√
r1(r1 + 1)

√
r2(r2 + 1) + 2r2 + 2

+3r1

(
r1(6r2 + 3) + 6

√
r1(r1 + 1)

√
r2(r2 + 1)

+10r2 + 5))) .

Let the partial derivative be zero and solve the quadratic
equation on r2,

r2 =
−1

2(3r1 + 1)2 (9r3
1 + 3r2

1 − 9r1 + 1)(
81r5

1 + 90r4
1 − 48r3

1 − 56r2
1 − 5r1 + 2±

r1(3r1 + 1)2
√

1 + 44r1 + 97r2
1 − 27r3

1 − 162r4
1 − 81r5

1

)
.

Note that only 0 ≤ r2 ≤ 1 is meaningful, we get r′2:

r′2 =
−1

2(3r1 + 1)2 (9r3
1 + 3r2

1 − 9r1 + 1)(
81r5

1 + 90r4
1 − 48r3

1 − 56r2
1 − 5r1 + 2+

r1(3r1 + 1)2
√

1 + 44r1 + 97r2
1 − 27r3

1 − 162r4
1 − 81r5

1

)
.

Hence again we have a single-variable function on

r1, or formally f(r1) , κ
(2,3)
2 ({r1, r

′
2}).

Then it is routine to verify that df(r)
dr = 0 has ex-

actly two roots at (0.18, 0.19) and (0.45, 0.46) respec-
tively, and the maximal is attained at the former one

and κ
(2,3)
2 (r) ≤ f(r) < 0.91.

5.2 Hardness of Approximating #CSP c5 (S2) It
was shown in [30, Theorem 2] that counting independent
sets for graphs with maximum degree 6 (equivalently
#CSP6(OR2) in our notation) does not admit FPTAS
unless NP = RP , with a reduction from MAX-CUT. To
prove Theorem 5.2, we simulate the hard instances of
#CSPc6(OR2) used in the reduction in [30] by instances
of #CSP c5 (S2). By pinning, we can realize the con-
straint OR2 by S2. So it suffices to reduce the variable
occurrence from 6 to 5. The idea is simple and straight-
forward. Intuitively, if variable x appears at two OR2

constraints OR(x, y) and OR(x, z), we replace them by
S2(x, y, z) = (x ∨ y) ∧ (x ∨ z). This does not change
the underlying constraint nor the number of satisfying
assignments but reduce the occurrence of variable x by

1541 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1. Thus, we only need to show that we can group some
pairs of adjacent OR2 constraints into one S2 so that
each variable appears in at most five constraints after
merging.

To this end, we first review the reduction used
in [30]. They first construct a bi-partite gadget G.
It begins with 5 random perfect matchings between
W+∪U+ and W−∪U−, and 1 random perfect matching
between W+ and W−. Then, they adjoin a collection
of 5-ary trees to U+ by identifying the leaves to vertices
in U+, and the set of roots becomes V + with degree 5,
do similar operation for U− to get V −.

Let H be the input graph in the MAX-CUT prob-
lem and G be a random bi-partite graph constructed as
above. They define HG by first taking |H| copies of G
as {Gx}x∈H , then connect edges between V +

x and V +
y

for every edge (x, y) in H, and similarly for V −x and V −y .

This HG is the hardness instance they used in the re-
duction, and in the language of #CSP6(OR2), vertices
are variables and edges are OR2 constraints.

(a) Matching M

(b) Matching M ′

(c) Left-joining M and M ′

Figure 1: Joining matchings on bipartite graph, a
color(shape) for a constraint.

Now we are ready for the simulation. We begin with
the construction for bi-partite graph G. Given 5 random
perfect matchings, instead of associating 5 edges to each
vertex, we associate each variable with no more than 4
constraints as follows:

• The first 2 random perfect matchings M,M ′ is left
joined on W+ ∪ U+. Formally for v ∈ W+ ∪ U+,
(v, u1) ∈ M , (v, u2) ∈ M ′, we replace the two
OR constraints with a single S2(v, u1, u2). As
illustrated in Figure 1, this saves one occurrence
for variables in W+ ∪ U+ .

• We take the next 2 random perfect matchings and
group them on W− ∪ U−. By that, we also save
one occurrence for variables in W− ∪ U−.

• For the last random perfect matching M , we add
OR(u, v) (or S2(u, v, 1), where the last variable is
pinned to 1) for every (u, v) ∈M .

Next take one more random matching M for W+ and
W−, add OR(u, v) for every (u, v) ∈ M . By these
simulation, we save one occurrence for every variable
in W+ ∪ U+ ∪W− ∪ U−.

Finally we adjoin trees onto U+ and U− to finish
the construction of G. We can group pairs of two OR2

into one S2 constraint in every 5-ary trees as depicted
in Figure 2. By this, we save two occurrences for every
variable in those 5-ary trees except the leaves. The
leaves will be identified with nodes in U+ ∪ U−, for
which we have already saved one occurrence.

For the last step to construct HG, we simply use the
constraint OR2 and do not do any merging. As the last
step does not introduce new nodes and we have saved at
least one occurrence for all the nodes for the instance.
We conclude that it is an instance for #CSPc5(S2). This
completes the proof.

References

[1] Antar Bandyopadhyay and David Gamarnik. Counting
without sampling: Asymptotics of the log-partition
function for certain statistical physics models. Random
Structures & Algorithms, 33(4):452–479, 2008.

[2] Mohsen Bayati, David Gamarnik, Dimitriy Katz,
Chandra Nair, and Prasad Tetali. Simple determinis-
tic approximation algorithms for counting matchings.
In Proceedings of STOC, pages 122–127, 2007.

[3] Magnus Bordewich, Martin Dyer, and Marek Karpin-
ski. Stopping times, metrics and approximate count-
ing. In Automata, Languages and Programming, vol-
ume 4051 of Lecture Notes in Computer Science, pages
108–119. Springer Berlin Heidelberg, 2006.

1542 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Figure 2: Expressing a 5-ary tree in #CSPc4(S2), a color(shape) for a constraint.

[4] A. Dudek, M. Karpinski, A. Ruciński, and
E. Szymańska. Approximate Counting of Match-
ings in $(3,3)$-Hypergraphs. ArXiv e-prints, February
2014.

[5] Martin Dyer and Catherine Greenhill. On Markov
chains for independent sets. Journal of Algorithms,
35(1):17–49, 2000.

[6] Martin Dyer, Mark Jerrum, and Eric Vigoda. Rapidly
mixing Markov chains for dismantleable constraint
graphs. In Randomization and Approximation Tech-
niques in Computer Science, pages 68–77. Springer,
2002.

[7] Martin E. Dyer, Alan M. Frieze, and Mark Jerrum.
On counting independent sets in sparse graphs. SIAM
Jounal on Computing, 31(5):1527–1541, 2002.

[8] Martin E. Dyer, Leslie Ann Goldberg, Markus Jalse-
nius, and David Richerby. The complexity of approx-
imating bounded-degree Boolean #csp. Inf. Comput.,
220:1–14, 2012.

[9] Martin E. Dyer, Leslie Ann Goldberg, and Mark Jer-
rum. A complexity dichotomy for hypergraph partition
functions. Computational Complexity, 19(4):605–633,
2010.

[10] Martin E. Dyer and Catherine S. Greenhill. On Markov
Chains for independent sets. Journal of Algorithms,
35(1):17–49, 2000.

[11] A. Galanis, D. Stefankovic, and E. Vigoda. Inapprox-
imability of the partition function for the antiferro-
magnetic ising and hard-core models. Arxiv preprint
arXiv:1203.2226, 2012.

[12] David Gamarnik and Dmitriy Katz. Correlation decay
and deterministic FPTAS for counting colorings of a
graph. Journal of Discrete Algorithms, 12:29–47, 2012.

[13] Leslie Ann Goldberg and Mark Jerrum. A polynomial-
time algorithm for estimating the partition function of
the ferromagnetic ising model on a regular matroid. In
Proceedings of ICALP, pages 521–532, 2011.

[14] Parikshit Gopalan, Raghu Meka, and Omer Reingold.
DNF sparsification and a faster deterministic counting
algorithm. In Computational Complexity (CCC), 2012
IEEE 27th Annual Conference on, pages 126–135.
IEEE, 2012.

[15] Mark Jerrum. A very simple algorithm for estimat-
ing the number of k-colorings of a low-degree graph.
Random Structures & Algorithms, 7(2):157–166, 1995.

[16] Mark Jerrum and Alistair Sinclair. Approximating the

permanent. SIAM journal on computing, 18(6):1149–
1178, 1989.

[17] Mark Jerrum and Alistair Sinclair. Polynomial-time
approximation algorithms for the ising model. SIAM
Journal on Computing, 22(5):1087–1116, 1993.

[18] Mark Jerrum and Alistair Sinclair. The Markov chain
Monte Carlo method: an approach to approximate
counting and integration, pages 482–520. PWS Pub-
lishing Co., Boston, MA, USA, 1997.

[19] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A
polynomial-time approximation algorithm for the per-
manent of a matrix with nonnegative entries. Journal
of the ACM, 51:671–697, July 2004.

[20] Zoran Kadelburg, Dusan Dukic, Milivoje Lukic, and
I Matic. Inequalities of Karamata. Schur and Muir-
head, and some applications. The Teaching of Mathe-
matics, 8(1):31–45, 2005.

[21] Richard M. Karp and Michael Luby. Monte-carlo
algorithms for enumeration and reliability problems.
In FOCS, pages 56–64, 1983.

[22] Richard M. Karp, Michael Luby, and Neal Madras.
Monte-carlo approximation algorithms for enumeration
problems. J. Algorithms, 10(3):429–448, 1989.

[23] Liang Li, Pinyan Lu, and Yitong Yin. Approximate
counting via correlation decay in spin systems. In
Proceedings of SODA, pages 922–940, 2012.

[24] Liang Li, Pinyan Lu, and Yitong Yin. Correlation
decay up to uniqueness in spin systems. In Proceedings
of SODA, pages 67–84, 2013.

[25] Chengyu Lin, Jingcheng Liu, and Pinyan Lu. A simple
FPTAS for counting edge covers. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 341–348, 2014.

[26] Pinyan Lu, Menghui Wang, and Chihao Zhang. FP-
TAS for weighted fibonacci gates and its applications.
In ICALP (1), pages 787–799, 2014.

[27] Pinyan Lu and Yitong Yin. Improved FPTAS for
multi-spin systems. In Proceedings of RANDOM 2013,
to appear.

[28] Michael Luby and Eric Vigoda. Approximately count-
ing up to four (extended abstract). In Proceedings of
STOC, pages 682–687, 1997.

[29] Alistair Sinclair, Piyush Srivastava, and Marc Thur-
ley. Approximation algorithms for two-state anti-
ferromagnetic spin systems on bounded degree graphs.
In Proceedings of SODA, pages 941–953, 2012.

1543 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



[30] Allan Sly. Computational transition at the uniqueness
threshold. In Proceedings of the 2010 IEEE 51st An-
nual Symposium on Foundations of Computer Science,
FOCS ’10, pages 287–296, Washington, DC, USA,
2010. IEEE Computer Society.

[31] Allan Sly and Nike Sun. The computational hardness
of counting in two-spin models on d-regular graphs. In
Proceedings of FOCS, pages 361–369, 2012.

[32] Luca Trevisan. A note on approximate counting for k-
DNF. In APPROX-RANDOM, pages 417–426, 2004.

[33] Eric Vigoda. Improved bounds for sampling coloring.
In Proceedings of FOCS, pages 51–59, 1999.

[34] Dror Weitz. Counting independent sets up to the tree
threshold. In Proceedings of STOC, pages 140–149,
2006.

[35] Yitong Yin and Chihao Zhang. Approximate counting
via correlation decay on planar graphs. In Proceedings
of SODA, pages 47–66, 2013.

A Counting from Ratio of Marginal
Probability

First we will be more specific for Theorem 5.1. For
0 < ε < 1 and #CSP c3 (K4) problem C with n variables

enumerated as {xi}, let α = 0.99, L = logα

(
ε

8
√

6n

)
,

C1 = C and Ci+1 be from Ci by pinning xi to 1. Then
Z(C,L) ,

∏
i (1 +R(Ci, xi, L)) is the desired FPTAS

with running time O
(
n
(
n
ε

)log1/α(6)
)

.

Proof of Theorem 3.1 and 5.1. First note that,

Z(C,L)

Z(C)
=

n∏
i

1 +R(Ci, xi, L)

1 +R(Ci, xi)
.

By Lemma 3.2 (resp. Lemma 5.2),

|R(Ci, xi, L)−R(Ci, xi)|
1 +R(Ci, xi)

≤ |R(Ci, xi, L)−R(Ci, xi)|

≤ ε

2n
.

Namely for every i,(
1− ε

2n

)
≤ 1 +R(Ci, xi, L)

1 +R(Ci, xi)
≤
(

1 +
ε

2n

)
,

Hence,

(
1− ε

2n

)n
≤

n∏
i

1 +R(Ci, xi, L)

1 +R(Ci, xi)
≤
(

1 +
ε

2n

)n
.

1− ε ≤ Z(C,L)

Z(C)
≤ 1 + ε.

The running time follows from that of R(C, x, L) and
there are O(n) calls to it.

B Proof of Proposition 4.3

We first introduce a few useful propositions.

Proposition B.1. If wi = wj ≤ 2, we
have κ

w
d (t) ≤ κ

w
d (t′) where t′i = t′j =

2wi−1

(
1−

√
ĥ(ti, wi)ĥ(tj , wj)

)
.

Proof. Let pi = ln(ĥ(ti, wi)), then ti = (1 −
epi)2wi−1,

∏
i ĥ(ti, wi) = e

∑
i pi , 0 < epi ≤ 1, also de-

note f(pi) , T
(
(1− epi)2wi−1, wi

)
.

If wi = wj = 1, then f(x) =
√

1− ex, and its

second derivative f ′′(x) = ex(ex−2)

4(1−ex)3/2
< 0, by Jensen’s

Inequality f(pi) + f(pj) ≤ 2f(
pi+pj

2 ).
If wi = wj = 2, then we have

f(x) = e−x (1− ex)

(
1− 2 (1− ex)√

2
√

1− ex
+

1√
2

)
,

f ′′(x) = −
(
1−
√

1− ex
)2

4ex
√

2− 2ex (1− ex)

(
4 (1− ex)

3/2
+

2 (1− ex)
2

+ 5 (1− ex) + 2
√

1− ex + 1
)
< 0.

also by Jensen’s Inequality f(pi) + f(pj) ≤ 2f(
pi+pj

2 ),
hence concludes the proof.

Proposition B.2. For t : 0 ≤ t ≤ 1
2 , w < 4,

∂κ
w
d (t)

∂tj
is

monotonically increasing in wi for ∀i ≤ d, i 6= j; while
monotonically decreasing in ti,∀i ≤ d.

Furthermore, if P variables {tp} with equal wp
amongst the d components of t are set to be equal, say

t̄p, the above monotonicity preserves for
∂κ

w
d (t)

∂t̄p
.

Proof. For w < 4, α−dlog4(wa+1)e = α−1 for every a,
which is just a constant multiplier.

∂κ
w
d (t)

∂tj
= α−1ĝ ·

(
∂T (tj , wj)

∂tj
−

1

2wj
· 1

ĥ(tj , wj)(1 +
∏
a ĥ(ta, wa))

d∑
a

T (ta, wa)

)
.

Note that ĥ(t, d) is monotonically increasing in d while
monotonically decreasing in t, hence ĝ is monotonically
increasing in wi,∀i ≤ d while monotonically decreasing
in ti,∀i ≤ d; T (t, d) is monotonically increasing in
t, next we show that T (t, d) is also monotonically
decreasing in d.

Firstly T (t, 2)− T (t, 1) =
(
√

2t−2)
√
t

2(2−t) < 0 for t ≤ 1
2 .

Next note that T (t, w) =
t

2w−1

1− t

2w−1

1−t√
t

+
t√
2

1− t

2w−1

w−1
2w−1 and

for w ≥ 2 both parts are monotonically decreasing in w.

1544 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Now it only remains to show that
∂T (tj ,wj)

∂tj
is

monotonically decreasing in t, since it does not involve
wi for i 6= j.

∂

∂t

(
∂T (t, w)

∂t

)
=

1

2t3/2 (2t− 2w)
3

(
−2w+ 7

2 (w − 1)t3/2+

12t2 (2w − 1) + 3t · 2w (2w − 4) + 4w − 4t3
)
.

Let f(t, w) , −2w+ 7
2 (w − 1)t3/2 + 12t2 (2w − 1) +

3t · 2w (2w − 4) + 4w − 4t3, since for 0 ≤ t ≤
1
2 , 2t − 2w < 0 so it suffices to show f(t, w) ≥
0. Note that f(t, w) ≥ 2w (2w − 4(w − 1)) +(
3 · 2w (2w − 4) + 12 (2w − 1) t− 4t2

)
t, and it is easy to

check that f(t, 1) = 4(1−t)3 > 0, f(t, 2) = −32
√

2t3/2−
4t3 + 36t2 + 16 ≥ t2(36− 4t) > 0, f(t, w) ≥ 0 for w ≥ 3
immediately follows from the monotonicity of 2w−4(w−
1) and of the parabola 3·2w (2w − 4)+12 (2w − 1) t−4t2.

In all we have ∂
∂t

(
∂T (t,w)
∂t

)
≤ 0.

To conclude, by combining the monotonicity of ĝ,
∂T (t,d)
∂t and − 1

2wj−1 · 1
ĥ(tj ,wj)(1+

∏
a ĥ(ta,wa))

·
∑d
a T (ta, wa),

yields the desired monotonicity of
∂κ

w
d (t)

∂tj
.

Furthermore, if we set P variables {tp} with equal
wp to be equal, denote this new set of variables t̄, and
denote the variable being set equal as t̄p,

∂κ
w
d (̄t)

∂t̄p
= P · α−1ĝ ·

(
∂T (t̄p, wp)

∂t̄p
−

1

2wp
· 1

ĥ(t̄p, wp)(1 +
∏
a ĥ(ta, wa))

·
d∑
a

T (ta, wa)

)
.

Hence the monotonicity is preserved.

Now we are ready for the numerical bounds.
Proof of Proposition 4.3.

Denote Λ1(w1) = maxt

{
κ
w
1 (t)

}
,Λ2(w1, w2) =

maxt

{
κ
w
2 (t)

}
,Λ3(w1, w2, w3) = maxt

{
κ
w
3 (t)

}
,

Λ4 (w1, w2, w3, w4) = maxt

{
κ
w
4 (t)

}
.

Case d = 1. First consider w1 < 4, by Proposition

B.2 and
∂κ

(1)
1 ({t})
∂t

∣∣
t= 1

2

= 1
3
√

6α
> 0, to maximize

κ
(1)
1 (t) ,t = 1

2 , hence Λ1(1) = 1√
6α

, similarly to

maximize κ
(2)
1 (t) or κ

(3)
1 (t), t = 1

2 , we have Λ1(2) =

α−1
√

2
21 ,Λ1(3) = α−1

√
3
70 . In all Λ1(w1) ≤ 1√

6α
≈

0.4162 < 0.42.

Next for w1 ≥ 4 note that Λ1(w1) ≤
w1

2(2w1−1)αlog4(w1+1)+1 , let f(w1) ,
w1

2(2w1−1)αlog4(w1+1)+1 , since f(4) < 0.14, t is

sufficient to check that df(w1)
dw1

< 0 for w1 ≥ 4.

df(w1)

dw1

=−
(

125
109

)log4(4w1+4)
23 log4(w1+1)+23−2 log4(4k+4))

(2w1 − 1)
2

(w1 + 1) log(4)

(2w1(w1 − 2) log(2) + 2w1w1 log(2)(w1 log(4)− 4)+

w1 (2w1 log(2) log(4)+

2w1 log

(
981

500

)
+ log

(
4000

981

)))
.

Since w1 ≥ 4, w1 log(4) − 4 > 0, so df(w1)
dw1

< 0,
hence Λ1(w1) < 0.14 for w1 ≥ 4.

Case d = 2. Since Λ1(2) =
√

2
21α
−1 <

0.31α−1,Λ1(3) =
√

3
70α
−1 < 0.21α−1, by

Proposition 4.2, if w1 ≥ 2 , Λ2(w1, w2) ≤
Λ1(w1) + Λ1(w2) ≤ 2Λ1(2) < 0.67; If
w2 ≥ 3, Λ2(w1, w2) ≤ Λ1(1) + Λ1(3) < 0.651.
So only (w1, w2) = (1, 1) and (1, 2) re-

mains. We let κ′2,(1,1)(t1) , ∂κ
(1,1)
2 ({t1,t1})

∂t1
,

κ′2,(1,2)(t1) ,
∂κ

(1,2)
2 ({t1, 12})

∂t1
, for the derivative of a

single variable function.

Case (1, 1). By Proposition B.1, Λ2(1, 1) =

maxt1

{
κ

(1,1)
2 ({t1, t1})

}
, so essentially there

is only one variable left, and by Proposition
B.2, fixing 2 variables into a single variable,
say t1, the monotonicity of the derivative of κ
with respect to t1 is preserved, which is essen-
tially κ′2,(1,1)(t1).

Since κ′2,(1,1)(0.4039) > 0, κ′2,(1,1)(0.404) < 0,
by monotonicity of the partial deriva-
tive, Λ2(1, 1) ≤ 2g

(
(1− 0.4039)2

)
·

T (0.404, 1)α−1 < 0.67.

Case (1, 2). Since
∂κ

(1,2)
2 (t)
∂t2

∣∣
t= 1

2

= 37
33
√

66α
> 0,

by Proposition B.2, to maximize κ
(1,2)
2 (t),

t2 = 1
2 . Clearly the partial deriva-

tive w.r.t t1 after fixing t2 = 1
2 is ex-

actly κ′2,(1,2)(t1), so by monotonicity and

κ′2,(1,2)(0.4533) > 0, κ′2,(1,1)(0.4534) < 0,

we have Λ2(1, 1) ≤ g
(
(1− 0.4533)(1− 1

22 )
)
·(

T (0.4534, 1) + T ( 1
2 , 2)

)
α−1 < 0.67.

Case d = 3. Note that if wj > 1, in order to maxi-
mize κ

w
3 (t), tj = 1

2 . This follows directly from
∂κ

(1,1,2)
3 (t)
∂t3

∣∣
t= 1

2

= 5
57
√

114α
> 0,

∂κ
(1,1,3)
3 (t)
∂t3

∣∣
t= 1

2

=
509

273
√

546α
> 0 and Proposition B.2.

1545 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Case (1, 1, 1). Similar to Case d = 2, (1, 1).Let

κ′3,(1,1,1)(t1) , ∂κ
(1,1,1)
3 ({t1,t1,t1})

∂t1
,

By Proposition B.1, since κ′3,(1,1,1)(0.3074) >

0, κ′3,(1,1,1)(0.3075) < 0, next by Proposi-

tion B.2, Λ3(1, 1, 1) ≤ 3g
(
(1− 0.3074)3

)
·

T (0.3075, 1)α−1 < 0.8471.

Case w1 ≥ 2. In these cases we have t = 1
2 , so by

direct evaluation we have

Λ3(2, 2, 2) = 3
√

6
91α
−1 < 0.786,

Λ3(2, 2, 3) = 37√
2674

α−1 < 0.73,

Λ3(2, 3, 3) = 16
√

2
1209α

−1 < 0.664,

Λ3(3, 3, 3) = 3
√

7
190α

−1 < 0.587.

Case w1 = 1, w3 ≥ 2. Recall that we can fix for
every wj > 1, tj = 1

2 , so similarly as in
Case d = 2, (1, 2), by Proposition B.1 we are
left with a single variable, and by Proposition
B.2, using a binary search we can determine
the location of the zeros of the derivative to
arbitrary precision i.e. the interval of t1 where
the maximal value is attained. In this way, we
could derive an upperbound based on the left-
right end-point of the extremal t1.

Case Extremal t1 Upperbound
(1,1,2) (0.32, 0.33) < 0.84
(1,1,3) (0.352, 0.353) < 0.7881
(1,2,2) (0.34, 0.35) < 0.82
(1,2,3) (0.38, 0.39) < 0.77
(1,3,3) (0.42, 0.43) < 0.72

Case d = 4. If wj > 2, in order to maximize
κ
w
4 (t), tj = 1

2 , which follows directly from
∂κ

(1,1,1,3)
4 (t)
∂t4

∣∣
t= 1

2

= 381
497
√

994α
> 0 and Proposition

B.2.

If w1 ≥ 2, in order to maximize κ
w
4 (t), t = 1

2 , which

follows directly from
∂κ

(2,2,2,2)
4 (t)
∂t4

∣∣
t= 1

2

= 311
337
√

674
>

0 and Proposition B.2.

First by Proposition 4.2,

Λ4(1, 1, 3, 3) ≤ Λ3(1, 1, 3) + Λ1(3) < 0.7881 +
0.2112 < 1,

Λ4(1, 3, 3, 3) ≤ Λ3(1, 3, 3)+Λ1(3) < 0.72+0.2112 <
1,

Λ4(1, 2, 3, 3) ≤ Λ3(1, 2, 3)+Λ1(3) < 0.77+0.2112 <
1.

Case (1, 1, 1, 1). Similar to Case d = 2, (1, 1).

By Proposition B.1, since
κ′4,(1,1,1,1)(0.24807) > 0, κ′4,(1,1,1,1)(0.24808) <

0, next by Proposition B.2, Λ4(1, 1, 1, 1) ≤
4g
(
(1− 0.24807)4

)
· T (0.24808, 1)α−1 < 1.

Case (1, 1, 1, 2). By Proposition B.1, we are left
with 2 variables, say t1, t2. Next we show
whatever value t2 takes, Λ4(1, 1, 1, 2) < 1.
The procedure works as follows, suppose t−2 ≤
t2 ≤ t+2 , then

Λ4(1, 1, 1, 2) < g
(
(1− t1)3(1− t−2 /2)

)(
3T (t1, 1) + T (t+2 , 2)

)
α−1.

Note that the right-hand-side is a single-
variate function in t1, so from now on it is sim-
ilar to Case d = 2, (1, 2), first by Proposition
B.2, using a binary search we can determine
to arbitrary precision t−1 , t

+
1 with t−1 ≤ t1 ≤ t

+
1

i.e. the location of zeros of the derivative, or
the value of t1 where the maximal value is at-
tained. After which we simply apply a direct
evaluation via

Λ4(1, 1, 1, 2) < g
(
(1− t−1 )3(1− t−2 /2)

)(
3T (t+1 , 1) + T (t+2 , 2)

)
α−1,

to get the desired upper bound.

Denote U(t−1 , t
+
1 , t
−
2 , t

+
2 ) ,

g
(

(1− t−1 )3(1− t−2
2 )
) (

3T (t+1 , 1) + T (t+2 , 2)
)
α−1.

For instance, suppose 0 ≤ t2 < 0.2, first via
binary search we determine the extremal t1 ∈
(0.28, 0.281), hence U(0.28, 0.281, 0, 0.2) <
0.993.

The following table is a case-by-case analysis.
We divide the range of t2, determine the range
of t1 where the maximal value is located, and
derive an upperbound based the range of both
t2 and t1 as U(t−1 , t

+
1 , t
−
2 , t

+
2 ).

t2 Extremal t1 U(t−1 , t
+
1 , t
−
2 , t

+
2 )

[0, 0.2) (0.28, 0.281) < 0.993
[0.2, 0.3) (0.268, 0.269) < 0.993
[0.3, 0.35) (0.26, 0.264) < 0.993
[0.35, 0.4) (0.259, 0.26) < 0.994
[0.4, 0.45) (0.255, 0.256) < 0.997
[0.45, 0.5] (0.251, 0.252) < 0.9991

Case (1, 1, 2, 2). Similar to the above, in this case

U(t−1 , t
+
1 , t
−
2 , t

+
2 ) , g

(
(1− t−1 )2(1− t−2

2
)2

)
(
2T (t+1 , 1) + 2T (t+2 , 2)

)
α−1.

1546 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



t2 Extremal t1 U
[0, 0.23) (0.32, 0.323) < 0.9944

[0.23, 0.35) (0.2895, 0.2896) < 0.9998
[0.35, 0.4) (0.27, 0.28) < 0.992
[0.4, 0.45) (0.26, 0.266) < 0.997
[0.45, 0.5] (0.256, 0.257) < 0.997

Case (1, 1, 2, 3). Similar to the above except t4 =
1
2 , so in this case

U(t−1 , t
+
1 , t
−
2 , t

+
2 ) , g

(
7

8
(1− t−1 )2(1− t−2

2
)

)
(

2T (t+1 , 1) + T (t+2 , 2) + T (
1

2
, 3)

)
α−1.

t2 Extremal t1 U
[0, 0.35) (0.304, 0.305) < 0.996

[0.35, 0.5] (0.28, 0.29) < 0.99

Case (1, 2, 2, 2). Similar to the above,

U(t−1 , t
+
1 , t
−
2 , t

+
2 ) , g

(
(1− t−1 )(1− t−2

2
)3

)
(
T (t+1 , 1) + 3T (t+2 , 2)

)
α−1.

t2 Extremal t1 U
[0, 0.25) (0.39, 0.4) < 0.991

[0.25, 0.35) (0.32, 0.33) < 0.983
[0.35, 0.4) (0.29, 0.3) < 0.98
[0.4, 0.45) (0.28, 0.29) < 0.99
[0.45, 0.5] (0.26, 0.27) < 0.998

Case (1, 2, 2, 3). Similar to the above except t4 =
1
2 , so in this case

U(t−1 , t
+
1 , t
−
2 , t

+
2 ) , g

(
7

8
(1− t−1 )(1− t−2

2
)2

)
(
T (t+1 , 1) + 2T (t+2 , 2) + T (

1

2
, 3)

)
α−1.

t2 Extremal t1 U
[0, 0.3) (0.36, 0.37) < 0.985

[0.3, 0.4] (0.32, 0.33) < 0.96
[0.4, 0.5] (0.29, 0.3) < 0.98

Case w1 ≥ 2. In these cases we have t = 1
2 , so by

direct evaluation we have

Λ4(2, 2, 2, 2) = 2
√

2
337α

−1 < 0.95,

Λ4(2, 2, 2, 3) = 51
√

3
9814α

−1 < 0.91,

Λ4(2, 2, 3, 3) = 23
√

2
1465α

−1 < 0.87,

Λ4(2, 3, 3, 3) = 41
√

7
18462α

−1 < 0.82,

Λ4(3, 3, 3, 3) = 42
√

2
6497α

−1 < 0.76.

Case (1, 1, 1, 3). Recall that we can fix for every
wj > 2, tj = 1

2 , so similar to Case d =
2, (1, 2), by Proposition B.1 we are left with
a single variable, and by Proposition B.2 we
determine via a binary search that extremal
t1 ∈ (0.27, 0.28),

Λ4(1, 1, 1, 3) < α−1g

(
7

8
(1− 0.27)3

)
(

3T (0.28, 1) + T (
1

2
, 3)

)
< 0.96.

C Proof of Lemma 5.2

Let ϕ(x) , 2 sinh−1 (
√
x), by induction on L we

show |ϕ ◦R(C, x, L)− ϕ ◦R(C, x)| ≤ 4αL. Consider
the analytic version of recursion R(C, x, L) as h(r) ,∏d
j=1

1

1+
∑wj
i rj,i

, essentially we show ϕ◦h◦ϕ−1 exhibits

exponential correlation decay.
Let ŷ be the estimated vector with ŷj,i = ϕ ◦

R (Cj,i, xj,i, L− 1), and y be the true vector with

yj,i = ϕ ◦R (Cj,i, xj,i). Denote ε , ŷ− y, r , ϕ−1(y).
By Mean Value Theorem, ∃γ : 0 ≤ γ ≤ 1, ỹ =

γy + (1− γ)ŷ such that, let r̃ , ϕ−1(ỹ),

ϕ ◦R(C, x, L)− ϕ ◦R(C, x)(C.1)

=
∑
a,b

∂(ϕ ◦ h ◦ ϕ−1)

∂ya,b

∣∣∣
y=ỹ
· εa,b

=
∑
a,b

Φ(h(r̃))

Φ(r̃a,b)

(
∂h

∂r̃a,b

∣∣∣
r=r̃

)
εa,b.

Let εmax , maxa,b {|εa,b|},

|ϕ ◦R(C, x, L)− ϕ ◦R(C, x)|

≤
∑
a,b

Φ(h(r̃))

Φ(r̃a,b)

∣∣∣∣( ∂h

∂ra,b

∣∣∣
r=r̃

)∣∣∣∣ · εmax
=κ̂

w
d (r̃) · εmax.

Recall that the case where dx(C) = 3 is invoked at
most once, by Proposition 5.2 and 5.3, for some wj , r

we have κ̂
w
3 (r̃) ≤ 3κ

(wj)
1 (r) < 2α.

As for the rest where dx(C) ≤ 2, we show by
induction on L with induction hypothesis:

|ϕ ◦R(C, x, L)− ϕ ◦R(C, x)| ≤ 2αL for dx(C) ≤ 2.

For base case L = 0, since 0 ≤ ϕ ◦ R < 2, so
|ϕ ◦R(C, x, L)− ϕ ◦R(C, x)| < 2.

1547 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Suppose the induction hypothesis holds for L < l,
we prove it is true for L = l.

If x is a free variable in C, i.e. d = 0, R(C, x, L) =
R(C, x) = 1, it is sufficient to check d = 1, 2. And
if x can be inferred (due to wa = 0 for some a),
R(C, x, L) = R(C, x) = 0.

Next by induction hypothesis, εmax ≤ 2αL−1, by
Proposition 5.1 and 5.2, κ̂

w
d (r̃) < α,

|ϕ ◦R(C, x, L)− ϕ ◦R(C, x)| ≤ 2αL for dx(C) ≤ 2.

Hence in all we have

|ϕ ◦R(C, x, L)− ϕ ◦R(C, x)| ≤ 4αL.

Similar to the CNF problem, this concludes the
proof.

1548 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 1

80
.1

68
.2

07
.7

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


