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Abstract be interpreted as realizing computations whjatima facie

take exponential time. However, due to the way the match-
Valiant has proposed a new theory of algorithmic com- circuits are constructed and the algebraic propertiesef th
putation based on perfect matchings and Pfaffians. WePfaffian, these properties can actually be computed in poly-
study the properties of matchgates—the basic building nomial time in the size of the matchcircuit. The crucial ob-
blocks in this new theory. We give a set of algebraic iden- servation behind this is a compositional theorem, which is
tities which completely characterizes these objects fer ar algebraic in nature, and states that the product of the chara
bitrary numbers of inputs and outputs. These identities ters of two constituent matchgates is the character of a com-
are derived from Grassmann-{Riker identities. The 4 by posite matchgate. Matchcircuits represent a new algorith-
4 matchgate character matrices are of particular interest. mic method to construct polynomial time algorithms per-
These were used in Valiant’s classical simulation of a frag- forming certain seemingly exponential time computations.
ment of quantum computations. For these 4 by 4 match-Valiant [12] used these matchcircuits to show that a non-
gates, we use Jacobi’'s theorem on compound matrices tdrivial, though restricted, fragment of quantum circuigéc
prove that the invertible matchgate matrices form a multi- be simulated classically in polynomial time. It is not clear
plicative group. Our results can also be expressed in the at the moment what is the class of all quantum circuits that
theory of Holographic Algorithms in terms of realizable can be simulated classically in this framework. More gen-
standard signatures. These results are useful in estabfish  erally it is not clear what are the ultimate capabilities and
limitations on the ultimate capabilities of Valiant's thgmf limitations of this new class of algorithms.
matchgate computations and Holographic Algorithms. Subsequently, Valiant [13] further introduced the notion
of Holographic Algorithms. This theory is also based on
matchgates, but with the additional ingredient of a chofce o
. a set of linear basis vectors, through which the computation
1 Introduction can be expressed and interpreted. In this theory the match-
gates used are restricted tofdanar matchgatednstead of
a character matrix, a planar matchgate is associated with a
signature The computation is ultimately carried out by the
elegant FKT method [6, 7, 10]. Valiant obtained polynomial
time holographic algorithms for a number of problems, mi-
fnor variations of which are NP-hard. The new algorithms
in this framework are quite exotic, e.g., in [16] a certain re
stricted counting problem for SAT is shown #>-hard and
its mod 2 version isbP-hard, and yet its mod 7 version is
solvable in P by holographic algorithms. Again the ultimate
capabilities and limitations of holographic algorithme ar
not clear at this time. It is precisely this uncertainty tisat
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Recently Valiant [12] has introduced a new method of de-
signing algorithms based on perfect matchings Bfaffi-
ans The basic building blocks in this new theory are called
matchgates Each matchgate definescharacter matrix
with entries defined in terms of the Pfaffian, which captures
the properties of the matchgate under the consideration o
(perfect) matchings when certain input and/or output nodes
are retained or removed. (Formal definitions will be given
in the next section.)

These matchgates can be combined to fonatchcir-
cuits Certain global properties of these matchcircuits can




thing before (aside from quantum algorithms). Valiant sug- requirements by construction. But one cannot prove in this
gested [13], “any proof of B NP may need to explain,and way the non-existence of such a matchgate. An interesting
not only to imply, the unsolvability” of NP-hard problems consequence of our proof is that when a required match-
using this approach. Our paper is a systematic investiga-gate exists, it can be realized by a weighted complete graph
tion of the capabilities and limitations of the basic builgli consisting of essentially the external nodes plus at masst on
blocks of this theory, namely the matchgates. omittable node. Thus the design of a required matchgate
It turns out that there is a rich internal structure to the boils down to the choice df*;’) weights, wherd: and! are
matchgates as expressed by the algebraic properties of Pfathe numbers of input and output nodes. This makes it fea-
fian. In [12, 11], Valiant has found 5 equations, called sible both to search, and in case of non-existence to prove
matchgate identities, which are necessary conditiondlifor a that this is so. The first negative results (lower bounds) in
4 by 4 matchgate characters. With a slight restriction,ghes this area all rely on this result [1, 16] (a preliminary ver-
5 matchgate identities are also sufficient for the case of 4sion of this paper appeared as ECCC TR06-018.) In [1] we
by 4 characters. The paper [8] also discusses matchgates assed results here to give non-existence theorems for nertai
related to quantum computing. The 4 by 4 matchgate char-holographic algorithms. In a paper titled “Accidental Al-
acters are important because they are used in the simulatiogorithms” [16] Valiant showed a surprising mod 7 counting
of quantum circuits. problem solvable in P, as well as some lower bounds for
The main results of this paper are concerned with this certain Satisfiability problem using holographic algarith
internal structure, and provide a fairly complete picture The lower bound proof relies on the results proved here.
of general matchgates. The aim of this paper is theory-In [3] we show, using results developed here and in [1], that
building, not problem solving. We believe a solid founda- Mod 7 is the only modulus for which Valiant's “Accidental
tion for the theory is needed to obtain further positive, and Algorithm” exists for that problem. In [4, 5], the charac-
more importantly, negative results. terization theorems of general matchgates developedsn thi
We state our main findings. It turns out that matchgates PaPer, namely Matchgate Identities, are also used in an es-
of every size form an algebraic variety. We first find a sym- sential way. The results presented here serve as a foundatio
metry as realized by a group action on the rows and columns{oF an in-depth study of the rich theory of matchcircuit and
of the 4 by 4 character matrices, and express matchgatd10lographic algorithms.
identities in terms of determinantal minors. Then we find
a total of 10 matchgate identities. We prove that they con-
stitute a complete set of matchgate identities for 4 by 4-char - BaCkg round
acters. Then we use Jacobi's theorem on compound malrigefore \e can describe our results, we will require quite a
ces to prove that the invertible 4 by 4 matchgate matricesye,, gefinitions. Most of these definitions have been intro-

form a multiplicative group. That it is closed under matrix 4,4 by Valiant in [12, 13, 11]. We will give a brief recap
multiplication is used in [12] as the basis for the quantum .o

simulation. Here we prove that if the character matrix is W'e will be dealing with weighted undirected graphs

invertible, its inverse is also the character matrix of some ~ _ (V, E, W), which are represented by skew-symmetric
matchgate. . adjacency matriced/. The Pfaffian of am x n skew-
More importantly we give results for general matchgates. symmetric matrix)/ is a polynomial function computable
We define matchgate identities for matchgates with arbi- polynomial time, satisfyingPf(1))? = det(M). We
trary k-inputs and/-outputs. Then we show that & set of assume the reader is acquainted with Pfaffians and Pfaf-
usefulGrassmann-Plucker identities [11] gives a complete fian Sums; otherwise please take a brief look at the first
set of matchgate identities for any general matchgate. — section of Appendix. We omit the definitions of Pfaffians
Combined with results from [1], these characterizations and Pfaffian Sums here, and our recap of other definitions
also apply to planar matchgates and their (standard) signais brief. We remark that the use of Pfaffian Sums is only
tures in the holographic algorithm framework. These have needed when one allows the so-called omittable nodes. For
been used as a foundation in the investigation of matchgridthe most part one can ignore this complication, and consider

computations and holographic algorithms [4, 5]. In partic- only matchgates without omittable nodes and consequently
ular we include here a characterization of symmetric signa-no Pfaffian Sums, but only Pfaffians.

tures, which follows from these matchgate identities.

Our results have important implications for both upper
and lower bounds. By definition, even with a fixed number
of input and output nodes, a matchgate may consist of an arlLet M be a skew-symmetric matrix, antl = {iy, ..., 4.}
bitrarily large number of internal nodes. Thus one can provewherei; < ... < i,. Pfas(41,...,4,), or whenlM is clear
the existence of a matchgate fulfilling certain computation from the context, simpl¥f(i4, ..., i.) or Pf(A), is defined

2.1 Grassmann-Plicker ldentities



as the Pfaffian of the matrix obtained by restrictihg to in V are consecutive fromto |V| and X, Y have minimal

rows and columns present i, namelyiy, ..., i.. When and maximal numbers, respectively.
the set notatiord is used, we implicitly assume the indices For Z C X UY, thecharactery(T', Z) of I with re-
are in increasing order. Ifi,..., i, are notinincreasing  spect toZ is defined to be the value(T", Z)PfS(G — Z),
order, the sign will vary according to the parity of the per- whereG — Z denotes the graph obtained after deleting the
mutation 1 2 ) ... Pty (in, i1, ..., 0r) = vertices_inZ together with their incident edges fro@hand
otz ey the modifier 4(I", Z) € {—1,1} counts the parity of the
—Pfar(i, iz, ... ir) and so on. Ifiy,is,..., i, arenotall  nymper of overlaps between matched edges in Z and
distinct, thenPfy; (i1, ..., i,) is defined to be zero. The matched external edges. Here, the nodeg are assumed
notationPfy[i, ..., i,] will denote the Pfaffian after re- 5 pe matched externally. Since the index numbers of input
moving the rows and columns dfy,...,i-}. Note that  podes are always less than any omittable node and those of
Pfalis, ..., i,] is the same aBf(M[A]), whereM[A] de-  output nodes always greater, it can be shown that the mod-
notes the matrix\/ with rows and columns fromi re- jfier is well-defined as it depends only éGhand not on the

moved. Also, in the index list, we denote bythe omission  getyal matchings i — Z.
of index. For examplePf(1,2,3,4,5) = Pf(1,2,4,5) Thecharacter matrixy (T") is defined to be thgl X! x 2/Y|

etc_.rh following. th tates the G Pliick matrix where rows are indexed by subs&f§ € X and
¢ toflowing theorem states the rassmann-FIUCKeT ¢olumns by subsets’ C v and the entries arg(T", Z) for

(GP) identities. variousZ = X’ UY’. To define the ordering of the rows
Theorem 2.1. [9] For any n x n skew-symmetric ma- and columns of this matrix precisely, we need to define a

trix M, and for anyl = {i1,....ix} C [n] and J = 1-1 correspondence between subsetKQa_nd respectively
{j1,....jr} C [n], the following is called the Grassmann- subsets _on) and the rows (and respectively columns) pf
Pliicker identity (generated byand.J), the matrix. Here, we assume that the chara<_:ter matrices
arenormally ordered.e. rows and columns are indexed by
L binary bit strings of lengthX | and |Y’| respectively, and
0=> (=D'PtGj, i1, ..., ix)PE(G1,--- 15, 5L) they correspond to subsets in lexicographic order. Conside
=1 an entry(i, j) of x(T'), where0 < i < 2Xland0 < j <

b 2I¥l. The subsefX’ C X corresponding ta is obtained
_ ~ . o _ as follows. Ifv € X is them!" smallest input vertex, then

+ D (D Pk i )PE(ik ) (1) v € X'iffthe m!" bit from the right in the binary expansion

k=1 of i is 1. Similarly, them®" largest output vertex is it

We will use the notatiofPf( o I) to denote the Pfaffian  iff the m!” bit from the right inj is 1. And Z = X' U
Pf(t,i1,...,ix), assumingl = {iy,...,ix} is listed in  Y'. E.g., if X = {1,2} andY = {n — 1,n}, wheren =
increasing order. |V| is the number of vertices ift. Then the ordering of
rows is@, {1}, {2}, {1, 2}, and the ordering of columns is
0, {n},{n—1},{n—1,n}.

A matchcircuitis a way of combining matchgates us-
A matchgatel’ is a quadruplg G, X,Y,T) whereG = ing connecting edges. Informally, all inputs/outputs afi-co
(V,E,W) is a graph,X C V is a set ofinput nodes, stituent matchgates have an external edge. The external
Y C V is a set ofoutputnodes, and” C V is a set of edges are connected to each other with an odd number of
omittablenodes such thaX, Y andT are pairwise disjoint,  connecting edges. The matchgates are arranged in a layered
andvi € T, if j € X thenj < iandifj € Y thenj > 1. fashion from left to right where the connecting edges sep-
We call the setX U Y the externalnodes. Furthermore, arate these layers. The edges above or below a matchgate
each external node is assumed to have exactly one incidenare referred to aparallel edges. The attachment of mod-
external edge For nodes inX, the other end point of the ifiers to a character is to ensure that all “overlaps” in the
external edge is assumed to have index less than any nodevaluation of the Pfaffian of the entire matchcircuit works
in V and for nodes iy, the other end point has index more out properly. Figure 2 shows a typical matchcircuit. We do
than any node ir’. The allowed matchings will be those not present the detailed definition here because we won't be
that saturate all the unomittable nodes and also an arpitrar dealing too much with matchcircuits. Note that the relative
(possibly empty) subset ¢&f. Whenever we refer to the ordering of all the vertices are carefully placed in a lagere
Pfaffian Sum (denoted b®{S) of a matchgate fragment, matchcircuit, and is schematically depicted in Figure 2 as
we assume that; = 1, if : € 7', and0 otherwise (See the well as in Figure 1. In Figure 1, one can verify that ev-
definition of Pfaffian Sum in the Appendix). We say that a ery edge on the top line outside of the matchgatgsI”
matchgaté” hasnormal numberingf the numbers of nodes andTI's (there are 16 of them) always incurs collectively an

2.2 Matchgates and Matchcircuits



even number of overlaps with all such edges from the bot- matrix from 1 to 4, instead of 0 to 3 written in binary bits 00

tom line, except those 2 parallel edges abbyandI'; (see to 11, as from Sec. 2.2.) It was shown that the character of

Theorem 3.2). We refer the reader to [12] for a more formal every 2-input, 2-output matchgate satisfies these equgation

definition. The character of a matchcircuit is defined in the Furthermore, if a matrix3 satisfies all these identities and

same way as the character of a matchgate except that theran additional constraint, namely,, # 0, then there is a

is no modifieru as we do not consider the matchcircuit it- matchgate having charactBr

self to have any external edges. Another difference is that Let I be a 2-input, 2-output matchgate having charac-

1 and0 have opposite meanings with respect to deletion of ter B. Assume that the matchgate is normally numbered

external nodes in matchgates and matchcircuits. and its character is normally ordered. Then Valiant's five
In [13] Valiant also introduceglanar matchgates the matchgate identities are quoted as follows [11]:

framework of holographic algorithms. A planar matchgate

T" with m external nodes comes with a planar embedding, B11Byy — B22Bss — B1yBy1 + BasBss = 0
where the external nodes are ordered counter-clockwise on B, By, — BosBys — By Boy + BosByss = 0
the external face. For a planar matchdatgith m external
. . . . Bs1 B Bs3Bys — B4y B3y — B2 B = 0
nodes, we assignsiandard signaturevhich has2™ entries 31544 + B33 Baz — 541534 — Ds25us
Bi13Bys + B33B2y — B14Baz — Ba3Bzy = 0
Gzt = Perﬂ\/[atch(G - Z), Bi2By4 — BooBsy — B14Bys + B32Bay = 0
wherePerfMatch(G — Z) = -y [ 1 jyenr wij» 1S @ SUM It turns out that there are interesting symmetries buried
over all perfect matchings/ in G — Z, andZ is the sub- in this set of identities. For examplé&,, By, — B14By

set of removed external nodes having the characteristic seis the determinant of the submatrix & obtained by re-
quencexz = iiiz...in,. (If there are omittable nodes in moving rows and columns 2 and 3. And the first matchgate
I' they must be on the external face, and then the sum ovelidentity asserts that this is equal to the minofht rows
M may range over matchings which saturate all the unomit- and columns 2 and 3.
table nodes.) PerfMatch s called the perfect matching-poly e will express this in a more compact notation. De-
nomial. note by D(ij, k) the determinant of thé x 2 submatrix

In many ways, the definitions for planar matchgates and of B consisting of rows andj, and columns: and, i.e.,
signatures are more intuitive than general matchgates an@(,'j, kl) is the following determinant, where < j and
characters. It is a remarkable fact proved in [1] that thesef < [,
two categories of objects are essentially the same. Planar Bi  Bu
matchgates and signatures have seen more research activi- ‘ Bji B;
ties; but this does not render the character theory usefless.
fact the only way we know how to prove the fundamental ~ We note that all five identities above can be written as the
structural properties of signatures is through resulthisf t ~determinantof & x 2 matrix being equal to the determinant
paper, in terms of the character theory with Pfaffians. Also of another2 x 2 matrix. These matrices are (not necessarily
certain constructions of planar matchgates and signature§ontiguous) sub-matrices of the character matrix. In this
are known to exist (by our general theory) and are explicitly notation, we can write the identities above as
known only via the proof of the general realizability theo-
rem in this paper (followed by transformations from [1]). In D(14,14) = D(23,23) D(24,14) = D(24,23)
short, what we prove here for matchgates and charactersap-  D(34,14) = D(34,23)  D(14,34) = D(23,34)
ply to planar matchgates and standard signatures, and that  D(14,24) = D(23,24)

is the only known proof route for these theorems on signa- _ _
tures. The symmetry is as follows: We consider the set

of (3) unordered pairs of1,2,3,4}, denoted byS =
{{132}7{133}7{134}5{233}3{234}3{334}} An involu-

3 2_input 2-output Matchgates tion p flips the pair{1,4} and{2, 3}, and leaves everything
else fixed. Thug is the permutation

<{1, 2} {1,3} {1,4} {2,3} {2,4} {3,4}>

In [11], Valiant presented a set of five equations on the en- {1,2} {1,3} {2,3} {1,4} {2,4} {3,4}

tries of the character matrix of 2-input, 2-output matclkegat

These were called matchgate identities. (In the expliit li In terms of thisp, the above five identities can all be
ing of Valiant’s equations, we will retain Valiant’s notati written as

and number the rows and columns of the 4 by 4 character D(p,q) = D(p(p), p(q)),

3.1 Complete Set of Identities



where the ordered pair (of unordered paifg)q) = thata,(r) = 11, anda, is an involution, i.e.q, = o t.
(14,14),(24,14), (34,14), (14, 34) and (14,24), respec-  Also its action on any bit of: is independent of other bits.
tively. Let a. be similarly defined in terms of € {0,1}2. Let B’

It turns out that we may apply the permutatipnto be the matrix obtained after applying the transformatigns
any ordered paiip, q), wherep,q € S. In order that anda., respectively, to the (indices of) rows and columns
(p(p), p(q)) is not identical to(p, ), (lest we get a trivial  of B. We now haveB], ;; # 0. Sincea, anda.. are their
statement,) we must have at least eitpeor ¢ (or both) own inverses, applying them ' yields B.
equal to{1,4} or {2,3}. In terms of a permutation group,

we have an action by the involutignx p on the setS x S, It can be verified (essentially because the actiong of
which has 10 non-trivial orbits of two elements each (and and that ofe, and ofa. commute) that the above set (2)
16 fixed points). of matchgate identities is invariant under any such trans-

This suggests that there are 10 matchgate identities. Itformation. If B satisfies the matchgate identities, then so
turns out that indeed one can prove these 10 matchgate idendoesB3’. From the construction in [12] there is a match-
tities are all valid for all 2-input 2-output matchgates.eTh ~gatel” that realizes5’. Now to construct the matchgalfe
proof uses the Grassmann-Pliicker identities and is ainitte to realize3, we first make a matchcircuit” with charac-

here. Here are the 5 additional identities: ter matrix B as shown in Figure 1. Each of the matchgates
I'1,T5, T3, Ty is eitherT™ orT'®) | defined below, depend-
D(12,14) = D(12,23) D(13,14) = D(13,23) ing on whether that bit of (or ¢) is 1 or 0. All the par-
D(14,12) = D(23,12)  D(14,13) = D(23,13) allel edges above any gate equall¥® are given weight
D(14,23) = D(23,14) —1. (This factor of—1 is needed to compensate for an odd

number of overlaps.) Her&("), T'®) arel-input, 1-output

More succinctly, matchgates whei@) simply “transmits” its input and'(?)

D(p.q) = D(p(p), pla)), 2 “flips” its input. The character matrix df(1>0is t?e identity
matrix and the character matrix 6f2) is ( . More
forany(p,q) € S x S. L0

) . ] concretelyI'®) consists of a single edge of weight11(!)
Theorem 3.1.If B is the character matrix of a 2-input 2-  ¢ongists of a path of 2 edges each of weight 1.

output matchgate over any field, then B satisfies the 10

matchgate identities. The Main Theorem in [12] (the basis for the quantum
simulation) can be extended to prove the Extended Main
Theorem, given in the Appendix. It can be verified that the
construction here satisfies the conditions of the Extended
Main Theorem. Therefore, the character matrix of this
matchcircuit is the product of the character matrices of the
five constituent matchgates, each extended to two inputs,

Now we show the completeness of these identities.
(From now on, it will be more convenient to use binary
bit strings to index rows and columns as stated in Sec. 2.2.
Thus, in the next Theorem, rows and columns are indexed
from0=00to3 = 11.)

Theorem 3.2. Let B be a4 x 4 matrix over a field” satis-  two outputs. (Here “extending” a one-bit matchgate to two
fying the 10 matchgate identities. Then there exists a match Pits means algebraically a tensor product with the 2 by 2
gateI such thaty (') = B. identity matrix.) This product if3. To see that, we look
at the matchcircuit in a slightly different way. The overall
Proof. The main idea of this proof is simple. B isiden-  action of the matchcircuit on its inputs is the compositién o

tically O then it is trivially realizable. 1fB1;11 # 0, we  the actions of the matchgates. The actioirofs described
can use the proof from [12]. 1B1;,11 = 0 but some other by B’. Therefore, the character matrix Bf is B.
entry is not 0, then we try to transfor® to B’ such that

By 11 # 0, while still satisfying all the 10 matchgate iden- Now the matchgaté' is obtained by deleting the input
tities. The proof below is not the most efficient for this spe- and output nodes of the matchcircuit and the edges incident
cial case of 4 by 4. But this method can be generalized toto them. The new leftmost/rightmost nodes are now consid-
prove Theorem 4.2. ered as input/output nodes. The edges that we deleted have

Our general technique is to compose matchgates to formno overlap among themselves, and they are now considered
a matchcircuit, which is then transformed into a matchgate as external edges of the matchg&teRecall thatl and0

that realizes the given matrix. have opposite meanings with respect to deletion of external
We assume? is not the zero matrix, and suppoBg,. # nodes in matchgates and matchcircuits, and since match-
0. Letr be written as a binary bit string if0, 1}2. Let7 = gates are assumed to have external edges while matchcir-

r @ 11 be the bit-wise XOR of with 11. Define a bijection  cuits don’t, the character df is exactly the same as that of
a, :{0,1}* — {0,1}? which mapsc — z @ 7. Itisclear ~ T"”. Hencel realizesB. O



3.2 Group Property 4 General Matchgates

We show that the subset of invertible character matriceswe now move on to generakinput, [-output matchgates.

of two input, two output matchgates forms a multiplica- Specifically, our goal is to find out whether there is a set
tive group. It is relatively easy to see that the product of of equations that completely characterizes the charasters
two character matrices is itself a character matrix [12] by general matchgates, just like the 10 equations we obtained
composing two matchgates in sequence. The composedor 2-input, 2-output matchgates.
matchgate has the product matrix as its character matrix, Basically, what we aim to prove is that the GP identi-
because enumerating all (perfect) matchings in the com-ties characterize all the character matrices. But we have to
posed matchgate is precisely reflected by matrix multipli- pe careful. There are various kinds of Pfaffians that occur in
cation. This is an essential ingredient in Valiant's cleaki  the GP identities. In particular, there are Pfaffians of satbm
simulation of a fragment of quantum computation. Here we trices obtained by deleting rows and columns corresponding
prove a more surprising result that the inverse of a characte to some internal nodes of the matchgate. These Pfaffians do
is also a character. We hope that this will provide a better not correspond to any entries of the character matrix. We
understanding of the scope of what is computable by thesenave to carefully choose the identities that we want to clas-
matchgates, including the scope of quantum operations theysify asmatchgate identitiefor general matchgates.
can simulate. Consider a normally numbered, normally ordered

Let A be anm x n matrix. A minor of ordets of Aisthe  input, i-output matchgat& havingn > k + [ vertices. We
determinant of & by k submatrix ofA. Thek'" compound  will only consider matchgates without omittable nodes; the
matrix of A is a matrixAl*) of order (') x (}), wherewe  case with matchgates having omittable nodes will be dis-
arrange all the minors of of orderk in lexicographicorder.  cussed in the Appendix. Léi/ be its skew-symmetric ad-

The matchgate identities have an elegant expression infacency matrix. Its character matri is a2* x 2! matrix
terms of the compound. with rows and columns indexed frofnthrough2* — 1 and

2! — 1, respectively. Lel be the set of nodes which are

Theorem 3.3.If B is a4 x 4 character matrix of a match-  not inputs or outputs. Since there are no omittable node,
gate, then the matchgate identities state precisely 18t  each entry ofB is either0 or the Pfaffian of a submatrix
is invariant under the following operation: simultaneopsl multiplied with the modifier. Let; = 1,...,i, = k be the
interchange row 3 with row 4 and column 3 with column 4. inputs ofl" and leto; = n, ..., 0, = n—I1+1 be its outputs.

We need to introduce a little more compact notation.
Given a row index- where0 < r < 28 — 1. Let X’ be
the subset of inputs corresponding to thein the binary

Proof. The relevant rows and columns are illustrated below.
The proof follows from the matchgate identities.

D(12,14) D(12,23) expansion of-. We will user to refer to the index as well
D(4,12) D(4,13) gg}j }j; gﬁiggg D(14.24) D43 as the sefX’ whenever the intended meaning is clear from
D(23.12) D(23.13) D(23.14) D(23.23) D(23.24) D(23,34) the context. For exampl®f ,,[X’] andPf,[r] denote the
D(24,14)  D(24,23) same thing. Similar notation applies to the column indices.
D(34,14) D(34,23)

Also, note that row indices and column indices refer to dis-
0 joint set of nodes il". So we can combine these two to-
gether. For example, if is a row index and: is a column
index, therPf;[rc| denotes the Pfaffian dff with all rows
and columns corresponding to this in  andc deleted. For
any entry of the charactds, the modifieru depends only
on the row index and the column index. Lt denote the
contribution of row index to the modifier value, and let.
denote the contribution of the column index. The modifier
atentryB,.. IS .. = prjie. In this notation, we can write
B.= MrcPf]W [T‘C] or SimplyBrc = MrcPf[Tc]'

Now consider all the GP identities stated in (1) obtained
from subsetd and.J of {1,...,n}. To be able to consider
this as a matchgate identity (i.e. in terms of the entriehef t
character matrix instead of the Pfaffians), it needs tofgatis
the following two properties:

Theorem 3.4. Let B be a4 x 4 matrix over a fieldF' that
satisfies the matchgate identities. Suppose tha invert-
ible. ThenB~! also satisfies the matchgate identities.

We omit the proof here, which uses Jacobi’'s Theorem on
compound matrices. (Itis also possible to give a brute force
verification by computer algebra, using the results from the
previous section that the 10 matchgate identities are neces
sary and sulfficient.)

In case wherB is not an invertible matrix, we have the
following:

Corollary 3.1. Let B be a4 x 4 matrix over a fieldF’ that

satisfies the matchgate identities. Thej( ) also satisfies 1. Every non-zero Pfaffian of (1) should be the Pfaffian
the matchgate identities. of a submatrix obtained by deleting only (rows and



columns corresponding to) some inputs and outputs ofto its appropriate position ifh. This position depends on the
T. inputé, and the input$;, ..., in J which is independent
) _ ] of n. The sign(—1)¢© only depends on the inputs inwhich
2. The GP identity should be independentrof (The 5 5gain independent of. Therefore, the coefficient of this
identity may depend ok and/, but not on the num- o1 is independent of.
ber of internal nodes.) Now let’s consider what happens when we move an out-

, . . L
The first property can be satisfied if we restrict ourselves putoy fromI'to J. The term in the GP identity is

to the GP identities obtained frofhand.J such that/ C

_1\a+|U|+b—f+1 g ’
InJ. Any such GP identity will be referred to aseful (=1) PE(I — {0} })PE(0} o J).

Lemma4.1.1f U C IN.J, then all non-zero Pfaffiansinthe  The only part in(—1)e+IVI+0=/+1 which depends on is

GP identity are Pfaffians with only some inputs or outputs (—1)!Y!. Again, we need to move, to its correct position

deleted. so that the indices in the second Pfaffian are in increasing
_ S order. This involves moving’, across all inputs i/, all

Proof. All the summands in a GP identity are products of elements of/, and some of the outputs if. Again, the

two Pfaffians which are on subsets obtained by moving only part that depends om is moving across elements of

some element frond to J or from J to /. If any element {7 which contributes a sigi—1)!VI. The overall sign is,

of U is moved from/ to J (or from J to I), then that will therefore, independent of 0
appear twice inJ (or I) and hence that term is zero. If any

other element is moved, both the Pfaffians contain all pf Now we know that all the useful GP identities are truly
having only some inputs or outputs deleted. 0 matchgate identitiesWe still need to replace the Pfaffians

by entries of the characté?. To do that, we'll need some

To prove that all the useful GP identities are independentnotation. Supposé is a superset of/. We want to define
of n is slightly more difficult. First we have to state a lit- the signu;. Let Ir be the set of inputs not id. Let I~
tle more precisely what we mean by being independent ofpe the set of outputs not ih Considerl as binary bits,
n. For this purpose, first we represent all the Pfaffians in a ;. is defined earlier as & contribution to the modifier.
GP identity by the indices that are deleted, rather than us-Similarly j;,. is defined. Then we let; = i, ur... Given
ing the indices that are retained as in (1). In other words, an inputt, let o be the number of inputi® I less thant
we use thePf[ | notation instead oPf( ). All the indices and g/ be the number of inputs more thanvhich arenot
that now appear are indices of inputs or outputs. We replacen I,

these indices by the symbals, . . . i, andoy, ..., 0. We Fix somel and.J such that/ C I n J, As before, sup-
claim that the GP identity is now independentraf Ba- posei} < ... < i, aretheinputsand; > ... > o, are
sically this means that the coefficient of every term in the the outputs in/ andi/ < ... < i’ andof > ... > o/,

sum (which is either-1 or —1) is independent of.. We are the inputs and outputs ih The non-zero terms in the
note that the number of terms clearly only dependsand  GP identity generated biyand.J will only involve moving

I, being determined by the respective subsetg f. . . iy, } somet € IAJ, the symmetric difference. Now consider an
and{os,...,0.}. inputt € I — J. The term corresponding to movimgrom
I'to J can be written as: (where we wrif¢. = B, u},10
andB.. = By, _y,J., and for notational convenience, we
write the negation of (1) i.e., starting the sum with

Lemma 4.2. All the useful GP identities are independent of
n.

Proof. Let I and.J be supersets df. Suppose; < ... <

i/, are the inputs i ando| > ... > o} are the outputs in (=1)*PEI = {t})PE(t o J)

I. Similarly, leti] < ... < i/ andof > ... > o/ be the = (- 1)04( “r Pf(I {t})Pf(JU {t})

inputs and outputs i. Consider the GP |dent|ty obtained - ol a!

from I andJ. Let's look at a term where inpu} is moved = (=1 J( 1) pr(=1)% ( ) B.PE(TU{t})

from I to J. The case of moving froni to I is symmetric. = (=% pr(— l)ﬁf B.Pf(J U {t})

This term can be written as - (- 1)%’#[( 1) By (—1)% (—l)ﬁgB**
(—1)°PE(I — {iL})PE(il 0 J). = (-1 (=% pspsB.B..

(Recall that in this notation the elementsjinbut noti’, are Here in the first equality the factqr—l)o‘%] comes from
assumed to be listed in increasing order.) To write this term movingt in ¢ o J to its proper place i U{t¢}. In the second
in Pf[ ] notation, we have to first arrange the terms in the equality we replac®f(I — {t}) by u;B., but we need to
second Pfaffian in increasing order. This requires mox¥ling make an additional modification on the modifier by the



factor(—l)"‘f (—1)55. The two fact0r$—1)°‘f cancelinthe
third equality. In the fourth equality we replaBé(.J U {t})

by 15 B.., but again we need to make an additional mod-
ification on the modifiep.; by the factor(—l)o‘%](—l)"f.
Finally the two factors{—l)a%’ cancel in the fifth equality.

Sincep; andy; appear in all terms of this GP identity,
we can drop this term. So, the term obtained by moving
inputt from I to J can be written as

(D% (1% Brougyse Bra-tyae- )
We can write a similar expression wheis an output.

The above form will allow us to prove an important prop-
erty of the GP identities. Létbe an input bit position be-
tweenl andk. Consider a permutatios, on the rows of
the character matri3 which, given a rowr, maps it to
row / such that- andr’ differ only in thebt” bit. l.e. oy,
flips thebt” bit. This induces a transformatigp on the GP
identities. We have the following lemma.

Lemma 4.3. Given anyb, 1 < b < k, p, is a permutation
on the GP identities. Similarly, is a permutation for any
output node.

Proof. Given a setl. Define the sef’ = TA{b} to be the
symmetric difference. We claim the following: & is the
GP identity generated hiyand.J, thenGs = p,(G1) is the
GP identity generated h¥ andJ’.

First, let's forget about the signs of the terms appearing
in G; andG,. ThenG; maps toG, term-for-term. Con-
sider the case whene I N J. Then, any non-zero term in
G, involves moving an element# b, from I to J (or from
J to I). This term maps to the term i@. that is obtained
by movingt from I’ to J' (or from J’ to I’). This also holds
whenb € I — J andt # b. The term obtained by moving
b e I—JfromI toJ maps to the term obtained by moving
be J —I'fromJ' toI'. The other cases wheéng I U .J
orb € J — I are similar.

Now we need to show that the signs are also the same

For now, let’s consider a term i@, obtained by moving an
inputt from I to J. As we saw above, the sign of this term
in Gy is (—1)% 8/ and of the corresponding term @,

is (—1)% +87 . Our analysis depends én First, if b is an
output vertex, or an input such thak ¢, thens! = /" and

Observe that now we can allow a permutation of the ma-
trix entries which is a composition of several input/output
bit-flips because all these are independent of each other.
The final induced transformation on the GP identities i$ stil
a permutation on the set of GP identities. This gives the
following theorem.

Theorem 4.1. If B is a2* x 2! matrix that satisfies all the
matchgate identities. L&®’ be the matrix obtained froms

by applying, possibly more than one, bit-flips on the rows
and columns. The®’ also satisfies the matchgate identi-
ties.

Now we are ready to prove the completeness theorem.
We say that 2% x 2! matrix B is realizable if there is a
matchgatd” such thaty(I') = B. We say that a matrix is
even (odd) ifB;; = 0 whenevetH () + H(j) is odd (even)
where H (i) denotes Hamming weight, i.e., the number of
1's in the binary expansion of The character matrix of
a matchgate without omittable nodes is either even or odd
depending on whetheris even or odd.

Theorem 4.2. Letk, [ be non-negative integers. LBtbe a
2F x 2! matrix which is either even or odd. Théhis the
character matrix of a-input, [-output matchgaté® if and
only if B satisfies all the useful GP identities.

Proof. We only need to prove the “if” part. If the matrix
B is identically zero, it is realizable by a matchgate. So we
can assume tha® is not identically zero.

First assume thaByr_1 511 = 1. If Bok_q 011 = ais
non-zero but not, then we can simply divide all the entries
in B by . Once we obtain a matchgate for that, we add
two new internal vertices with an edge of weighbetween
them. The two new vertices have consecutive indices so
that there are no overlaps with anything else. This will have
characterB.

For By _y 21y = 1, the matchgatd™ is a complete
graph onk + [ vertices. It hask inputs andl outputs
(and no internal nodes). Supposeand j are two ver-
tices. Consider the row and columnc such thatr¢ =
{1,....k + 1} — {i,j}, i.e. the entryB,. of the matrix
corresponds to all nodes excénd; being deleted. The
weight of the edg€s, j) is simply 1. B,.. Let the skew-
symmetric adjacency matrix &fbe M.

We claim that the character matrixBf x ("), is equal to

B/ = B/ because these only depend on the inputs morep., By construction, all the entries &f with total Hamming

thant. And if b > t is an input vertex, then is counted
exactly once in3! together withs!, and also exactly once
in 3/ together with3;". Thus, it is counted exactly twice
amongs!, 57, 81", 3/ . It follows that in any case, the sum
Bl + B/ + pl' + 3/ is always even. Therefore, the signs
are also the same.

The case whenis an output node is similar and is omit-
ted here. This completes the proof. O

weight (i.e. B,.. where the total number dfs in rc is) at
leastk + | — 2 are equal to those iR(T"). (By convention,
the Pfaffian of a 0 by 0 matrix is 1.) Now we proceed by
downward induction on the total Hamming weighi{r) +

H (c). Consider any entrys,.. such thatn = H(r) + H(c)

is less thark + [ — 2, and assume that the claim holds for
all entries of weight> m. Leta; < ... < a,, be the
bits that arel in re. Letl < o' < k + [ be an index



not equal to any of these. Consider the GP identity with 5 Realizability of Signatures
I={1,....k+1} —{a1,...,am,a’} andJ = {da’}. This
identity is of the form: In [13] Valiant introduced the theory of Holographic Al-

gorithms. Here the basic objects are planar matchgates and

Piular, ..., am]PEr() their signatures. (In this paper we do not consider sigeatur
= > (BPfulbdar,. .. am|Pia(b,a’) of a planar matchgate under a basis transformation. Without
b#a’,a1,...,am this transformation, we only consider tegandardsigna-

tures as defined in Sec. 2. Also for simplicity in the follow-
Note thatPfas() = 1 = x(I')ar_1,90-1 = Bar_1,90_1. The ing discussion we will not consider omittable nodes.) These
right hand side is a sum of products of two terms. Each termpjanar matchgates are connected to form matchgrids which
is the Pfaffian of\/ with a supersetofs, ..., a., removed.  are the counter parts to matchcircuits. As mentioned ear-
These correspond to entriesfl”) andB in positions with  Jier in Section 2, we have accomplished a unification of the
total Hamming weight strictly more than. (Note that: + matchcircuit/character theory and the matchgrid/sigreatu
l —2 > m.) SinceB is equal tox(I") on all such entries  theory in [1].
and sinceB andy (I") bqth satisfy the GP identities, we see Roughly speaking, this unification is accomplished as
that B, = x(I'),c. This completes the proof for the case {g)10ys. Given a planar matchgate with a signatGrede-
Bar 1,911 # 0. . . _ fined by the perfect matching polynomial PerfMatch, one
Now supposé is notidentically zero buBy:_; 511 = uses the FKT algorithm to show that each entry(bis
0. LetB;; k;ce anon-zero entry if§. We use bit-flips to Map  equal to a corresponding Pfaffian of the submatrix eira
iandjto2 T 1 and2" — 1 respectively to geta matriig gle skew-symmetric matri¥/, where the submatrix is ob-
such thatB;, _, ,_, # 0. By Theorem 4.15" also sat-  tained by removing the appropriate rows and columng/of
B'. Then we can construttthat realizes3 by usingacon-  skew-symmetric adjacency matrix of the planar matchgate
struction Similar.to What we used in the 2—input, 2'0Utput graph’ by running the FKT a|gorithm_ The FKT a|gorithm
case, as shown in Figure 1. O is applied once to the planar matchgate graph with no ver-
tex removed; but conceptually one can think of it being
the case when we allow omittable nodes too i.e. the ma_applied simultaneously to the _expon_entially many induced
trix is neither even nor odd. First note that any matchgate subgraphs of the maichgate with varlous.externallnodes re-
moved. By the property of the FKT algorithm, which only

is equivalent to a matchgate with an even number of nodes

and exactly one omittable node which has a number less2SSI9NS atl factor to each edge, this gives a single consis-

than the output nodes but more than all other nodes ([12])_tgntthwe|ghted altzr_ed g:cafg-)fh Tof(:r?ch egtryto_f tge signature
We need to change the definition of useful GP identity to € corresponding Faitian ot the submatrix becomes an

mean that every Pfaffian has only some inputs/outputs an n'Fry_ of the character of a matchggte, without the modifier.
possibly, the omittable node deleted. In that case, we canin his is called the _”"?"‘ef]' characte_r in [1].

terpret any such Pfaffian as a Pfaffian sum of the matchgate N many ways, itis simpler to discuss the structural prop-
with some inputs/outputs deleted which then corresponds€rties of a naked character [1] than a character with the mod-
to the character entries. By using similar arguments, we canifiers, in particular with the Matchgate Identities. The mod
prove that all useful GP identities are independent ahd ifiers ;1 are defined in order to account for additional cross-
the analog of theorem 4.1 that input/output bit-flips induce °Vers when matchgates are connected within a matchcircuit.

a permutation on the GP identities. The completeness theoBUt in terms of the character matrix, the modifiers amount
rem is proved in the Appendix. to a multiplication of at+-1 factor along every row and ev-

From the proofs of theorem 4.2 and theorem 7.1 (in the &Y column, where the value of each row (column) factor is

appendix), we see that we need ok + [) vertices to determined by the row (column) index. Thus the set of all
realize B. This is interesting because in the definition of Matchgate Identities is transformed to the set of Matchgate

Actually, the proof of the above theorem also works in

matchgates, we allow fxinput, l-output matchgate to have
an arbitrary number of internal nodes. We now know that
any such matchgate is equivalent to another with 6rly+

Identities for naked characters, in a one-to-one fashion.

Now we discuss the technically more interesting reverse
direction from (naked) characters to signatures. We take a

1) nodes. This makes it possible to prove the non-existencegeneral (not necessarily planar) matchgateith a naked

of certain matchgates.

Corollary 4.1. LetT' be anyk-input, [-output matchgate.
Then there is another matchgalté having onlyO(k + 1)
vertices such that(T") = x(I").

charactery(T"), and realize it as the signature of a planar
matchgate. This is done by a specific embedding of all the
vertices ofl" on a semi-circle [1], and then replacing each
physical crossing of a pair of edges by a crossover gadget
from [13]. This produces a planar matchgéte One then



argues that the PerfMatch value for each signature entry ofand whereiy, ... iy, € I — J, tg41,... 0k, € J — I,
I is the same as the corresponding Pfaffian value of theiy,+1,...,ix, € I — J, and so on.
naked character df. Every non-zero term in (1) involves moving either an el-
It follows that Theorem 4.2 also applies to planar match- ement from/ — J to J or fromJ — [ to I. Fori;, j =
gates and their signatures. More specifically, a set of val-1, ..., k1, the term in (1) i —1)7Pf(I — {i;})Pf(i; o J).
ues can be the standard signature of a planar matchgatélote thati; is already in its right place with respect tb
(without omittable nodes) iff they satisfy all the parity-re ~ within i; o J. Fori;,j = ki + 1,..., ko, the termin (1)
quirements and all thesefulGrassmann-Pliicker identities. is (—1)? =% Pf(i; o I)Pf(J — {i;}). When we move; to
Thus, we have the following three categories of objects all its right place with respect té within ¢; o I, namelyk;
equivalent to each other: Signatures of planar matchgatesplaces to the right, this incurs-1)*1. Thus the term be-
naked characters of planar matchgates, and naked characsomes(—1)/Pf(1 U {i;})Pf(J — {i;}), wherel U {i;} is
ters of general (not necessarily planar) matchgates. And ofassumed to be in increasing order.
course, characters and naked characters are related to each In this way it is easy to see that all the useful matchgate
other by the modifiers (which are, in some sense, externalidentities on a realizable standard signatGref arity m
to the matchgates). The character theory can be viewed asan be expressed as follows:
primarily algebraic, while signatures of planar matchgate Matchgate Identities for Signatures: A patternc is an
can be viewed as its geometric realization. Another useful m-bit string, i.e.,a € {0,1}™. A position vectorP =
observation derived from this dual perspective is that one {p;},i € [I], is a subsequence §1,2,...,m}, i.e.,p; €
can really unify the notions of input and output nodes of a [m]andp; < p2 < --- < p;. We also use to denote then-
general matchgate; the salient feature is its circulararde ~ bit string, whosép., p2, . . ., p;)-th bits arel and others are
as external nodes of a planar matchgate represented by it6. Lete; € {0,1}™ be the pattern with in thei-th bit and
signature. 0 elsewhere. Letv + 3 denote the pattern obtained from
However, there is a subtle point concerning the equiv- bitwise XOR the patterna and 3. Then for any pattern
alence of signatures and (naked) characters expressed as € {0, 1} and any position vectaP = {p;},i € [I], we
Pfaffians. To a signature tensGrsatisfying all the Match-  have the following identity:
gate ldentities (and the parity requirements), Theorem 4.2 !
gives a realization via the character of a complete graph Z(_l)igaﬂm Gotrtes; — . (4)
without internal nodes. (Technically this is the case with i—1

G-l =1, In general, we need to “flip” some external More symmetrically, letr, 5 € {0, 1}™ be any patterns,
nodes, thus introduce a linear number of internal nodes.),q |etp — (pi} = a + B,i € [I], be their bitwise XOR as
However, the realization as a planar matchgate for the sig-a position vec'zor Then ' ’

natureG may have some internal nodes, necessitated by the
introduction of the cross-over gadgets (see below). Thus it
is notthe case that we can realizeas a signature without
internal nodes. It has aritym, this process may introduce
O(m?) internal nodes. Theorem 4.2 says that a ten€gr= (G »-im) is realiz-

, _ - able as the standard signature of some planar matchgate iff
Let's consider exactly how Matchgate Identities are ex- jt satisfies all the parity requirements and (4) forcalénd
pressed for the signatures. L@tbe the signature of apla-  p (or equivalently (5) for altv and3).

nar matchgate withn external nodes. Since each signature

entry can be viewed as a Pfaffian (via the FKT) we have A signature is called aymmetric signaturé its entries
oneusefulGrassmann-Pliicker identity for each pair of sub- only depend on the cardinality of the subset of removed ex-
sets] and.J both containing all the internal nodes. Itis ternal vertices. Let; be the value with a subset of cardi-
clear that the only non-zero terms in the Grassmann-Ptiicke nality i removed. Then a symmetric signature can be de-
identity involve moving elements in the symmetric differ- noted more succinctly ago, ..., zy). In the framework
encel A.J, which is a subset of the external nodes. We now of holographic algorithms, symmetric signatures are parti
ignore the internal nodes and consideand.J as subsets ularly important, because they have a clear combinatorial
of the external nodes, (under a circular shift) identifiethwi  meaning. For standard symmetric signatures we have

l
D (—1)iGeten gt = . (5)

i=1

[m] ={1,2,...,m}. Suppose Lemma 5.1. Supposd’ is an even matchgate with sym-
, o o , metric standard signaturg, . . ., z,,|. Then for all odd;,
TAT = {i1, ootk Ty 1y oy Ty Thg b 1y - v v s kgy - - ) z; = 0, and there exist; andr, not both zero, such that for

) ) ) ) ) everyever < k <m,
wherei; < -+ < gy < g1 < e < gy < Ggpp1 <

-+ <, < ...inthe order of the index s€tl, 2, ..., m}, T12k—2 = T22k.



Proof. The parity condition is obvious.

Form < 3 the conditionr; z;_o = 7225 IS always satis-
fiable for some ; andr, not both zero.

Let m > 4, we use matchgate identities (4). Consider
the patternl000a wherea has Hamming weigh2i, and
0 < 2i < m — 4. Let the position vector b&1110...0.
Then (4) gives

— GOOOOaGlllla _ GllOOaGOOlla

0
+G1010aG0101a _ GlOOlaGOHOa'

It follows from symmetry that the last two terms cancel and
we getzo;zoi1a = (22i42)°.

Also, if m is even then consider the patte®0« and
the position vectorl1113, wherea = 0™ * and 3 =
1™—4. Then we have

0= GOOOOaGllllﬁ _ GllOOaGOOllﬁ
_,’_GIOIOQGOIOIB _ GlOOlaGOIIOﬁ + ...

The terms cancel except the first two, from which we get
Z0Rm = Z2Zm—2.

Similarly if m is odd, we consider the pattet00...0
and the position vectorl111...10 and we can get
20Zm—1 = 22Zm—3-

The lemma follows from this. O

Similarly one can prove

Lemma 5.2. Supposd” is an odd matchgate, with sym-
metric standard signaturgy, . . ., z,,]. Then for all ever,

z; = 0, and there exist; andr, not both zero, such that for
every odd < k < m,

T1Z2k—2 = T2Zk

Using the fact that the signatures are symmetric, it can be
proved that the set of useful Grassmann-Plucker Idestitie

considered here already constitutes a complete set. It fol-

lows from the characterization theorem for matchgates, tha
the requirements of Lemma 5.1, and Lemma 5.2 are both
necessary and sufficient.

Another way to express this is

Theorem 5.1. A symmetric signaturgy, . . ., z,,] of a pla-
nar matchgate witlevencardinality is realizable iff for all
oddi, z; = 0, and there exist constants, 2 and )\, such
thatZQi =\ (Tl)Lm/QJii . (Tg)i, for0 <1 < L%J

A symmetric signaturgy, ..., z,,] of a planar match-
gate with odd cardinality is realizable iff for all even,
z; = 0, and there exist constants, r, and ), such that
Z9i—1 = A+ (Tl)(m/ﬂ_i . (T‘Q)i_l, forl1 <:< ’—%1

Given an array of values forming a kind of geometric

progression as above, the general theory guarantees that
there exists a planar matchgate whose signature is the given

array. Itis a curious fact that the only construction realiz
ing this planar matchgate is via the general proof, and thus
via Pfaffian, as follows: We first construct a complete graph
with every edge having the same weight. This is given by
the proof of Theorem 4.2. For that graph it can be checked
that the Pfaffian values are the correct values, as in a (faked
character. Then the planar embedding and the crossover
gadget from [1, 13] are used to produce a planar match-
gate with the given signature. In particular there will be
someO(m?) extra internal nodes ifs is the number of ex-
ternal nodes (arity) of the matchgate. We do not know of
any direct construction of a planar matchgate with the given
signature, even for this simple case.

6 Conclusions

Valiant's new theory of matchgate computations is an ex-
traordinarily fresh attempt at exploring and devising new
algorithmic approaches to problems. It has already yielded
highly non-trivial results, such as his classical simalati

of a fragment of quantum circuits, and his holographic al-
gorithms. But a full account of the capabilities of match-
gate computations is far from being clear. We presented in
this paper some fundamental results concerning the bgildin
blocks of his theory, namely the matchgates. Our goal here
is theory-building, not so much as problem-solving. We be-
lieve that it is essential to gain a better understanding of
these matchgates before one can get a full picture of match-
gate computations [1, 16]. It is hoped that results in this pa
per will pave the way for some in-depth study of Valiant’s
new theory. In [1], we applied our results on matchgates
to obtain some negative results of holographic algorithms.
In [16] Valiant has obtained some important lower bound
for holographic algorithms using results of this paper.
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the complement oft. The Pfaffian Sum of/ is a polyno-  Identities for Matchgates with Omittable
mial over indeterminates;, \o, ..., \, defined as Nodes

Lemma 7.1. Consider any GP identity such that all the
PIS(M) = Z <H Ai) PE(M[A]) Pfaffians appearing in it are Pfaffians of sub-matrices with

A ied some input/output nodes and/or the omittable node deleted.
where the summation is over t2& submatrices obtained Remove any terms which have an odd number of indices
from M by deleting some subsétof indices. The Pfaffian  deleted. Write each remaining term as a Pfaffian sum of a
Sum of M is also computable in polynomial time for any matrix with a subset of inputs/outputs deleted. Then itis a
values of);. We will only need instances where eakhis useful identity and is independentof Therefore, it is a
fixed to be0 or 1. matchgate identity.

. Theorem 7.2. Letk, [ be non-negative integers. LBtbe a
Extended Main Theorem 2% x 2! matrix. ThenB is the character matrix of &-input,

In this Appendix, we give an extension of the Main Theo- (-output matchgaté” if and only if B satisfies all the GP
rem proved by Valiantin [12]. It is a minor extension which identities.
was needed in Section 3.

Letl’ = (G, X,Y,T) be a matchgate. Let us cdll an
evenmatchgate iPfS(G\ Z) is zero whenevef C X UY
has odd size and call @ddif P{S(G\Z) is zero whenever
|Z] is even. Let us modify the definition of a matchcircuit to
allow parallel edges to have weighfl. Then we can prove
the followingExtended Main Theorem

Proof. The proof is almost the same as for the case with-
out omittable nodes. As earlier, let's assume, WLOG, that
Bor_y 217 = 1. The matchgatd’ is a complete graph

k + [ + 1 vertices. It hag inputs andl outputs and one
omittable node. The weight of the edge joining notlaad

j is the appropriate modifier times the entry of the matrix
B which corresponds té, j being deleted. Note that now,
Theorem 7.1. [Extended Main Theorem]Consider a  this entry might have total Hamming weight (as far as in-

matchcircuitl’ composed of gates as in [12]. Suppose that puts/outputs are concerned) eitiie#- [ — 1 or k + [ — 2,
every gate is: depending on whether eithéor j is the omittable node or

not. Let the skew-symmetric adjacency matrixiobe M .
We claim that the character matrix Bf say A, is equal to
2. an even gate app“ed to consecutive bhits B. By deﬁnition, all the entries oB with total Hamming

LiyTig1,. .., o, for somej > 0, weight at leastc + [ — 2 are equal to those idl. Now

we proceed by downward induction on the total Hamming
3.an odd gate applied to consecutive bits \eight H(i) + H(j). Consider any other entri;; such

Tis Tit1, - - -, Tit; fOr somej > 0, or thatH (i) + H(j) is less thark + [ — 2.

Leta; < ... < a, be the bits that aré in i and .
Depending on the parity of, we either need to delete the
Suppose also that every parallel edge above any odd matchomittable node, say, or keep it. LetS be the set of nodes
gate, if any, has weight 1 and all other parallel edges have  that we need to delete to get this entry®f Let1 < o’ <
weight1. Then the character matrix df is the product of 4+ | be an index not ir5. Consider the GP identity with
the character matrices of the constituent matchgates, each; — I — § U {4’} which we'll denote byl = {$,a’} and
extended to as many inputs/outputs as thode of let J = {a’}. This identity looks like the following:

1. a gate with diagonal character matrix,

4. an arbitrary gate on bitsq, ..., z; for somej > 1.

Proof. The only kind of overlap that we need to worry , ,
about in the proof of the Main Theorem in [12] is that be- ~ Tfm [SIPEn () = Z(i)PfM[{b’ a’} U SIPfar (b, a')
tween parallel and external edges of a matchgate. By the bel

definition of an odd gate, the only non-zero in its charac- \te thatPfa;() = 1 = Ay 191y = Bor_ 10 1. The

ter matrix can be in positions which correspond to an odd right hand side is a sum of products of two terms. Each
number of inputs/outputs being matched externally. Any (arm is the Pfaffian sum of/ with a superset ofi1, ... a,
parallel edge above a matchgate has an overlap with any ofemoved. These correspond to entriesdoénd B in po-

its external edges that are present. Since only those matchsjtions with total Hamming weight more than SinceB
ings make a non-zero contribution when there are an oddis equal toA on all such entries and sindé satisfies the
number nodes matched externally, any such parallel edgesp identities, we see that;; = A;;. This completes the
overlaps with an odd number of external edges; thus CoN-proof, 0
tributing a— sign which cancels with its own weight efl.

The rest of the proof is exactly as in [12] O
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Figure 1. The figure shows the matchcircuit I used in the proof of theorem 3.2. Suppose  «. flips
the second bit only and  «. flips the first bit only. Then T, and T4 are equal to T i.e. they flip their
input; and T'; and T's5 simply transmit their input. Therefore, the parallel edge a bove I'; has weight —1
and all other parallel edges, in particular the one above I's have weight 1. In the general case when

there are k-inputs and [-outputs, if any matchgate flips its input, all the parallel e dges above it have
a weight —1.
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Figure 2. An example of a matchcircuit composed of matchgate s A, Band C. Ais a 3-input, 3-output
matchgate while B and C' are 2-input, 2-output matchgates. The boldest line represe nt parallel edges,
the lightest represent connectingedges and the rest are externaledges. The nodes in the matchcircuit

are numbered in increasing order from left to right. The five | eftmost nodes are its  inputsand the five
rightmost ones are its  outputs



