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Abstract

Valiant has proposed a new theory of algorithmic com-
putation based on perfect matchings and Pfaffians. We
study the properties of matchgates—the basic building
blocks in this new theory. We give a set of algebraic iden-
tities which completely characterizes these objects for ar-
bitrary numbers of inputs and outputs. These identities
are derived from Grassmann-Plücker identities. The 4 by
4 matchgate character matrices are of particular interest.
These were used in Valiant’s classical simulation of a frag-
ment of quantum computations. For these 4 by 4 match-
gates, we use Jacobi’s theorem on compound matrices to
prove that the invertible matchgate matrices form a multi-
plicative group. Our results can also be expressed in the
theory of Holographic Algorithms in terms of realizable
standard signatures. These results are useful in establishing
limitations on the ultimate capabilities of Valiant’s theory of
matchgate computations and Holographic Algorithms.

1 Introduction

Recently Valiant [12] has introduced a new method of de-
signing algorithms based on perfect matchings andPfaffi-
ans. The basic building blocks in this new theory are called
matchgates. Each matchgate defines acharacter matrix,
with entries defined in terms of the Pfaffian, which captures
the properties of the matchgate under the consideration of
(perfect) matchings when certain input and/or output nodes
are retained or removed. (Formal definitions will be given
in the next section.)

These matchgates can be combined to formmatchcir-
cuits. Certain global properties of these matchcircuits can
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be interpreted as realizing computations which,prima facie,
take exponential time. However, due to the way the match-
circuits are constructed and the algebraic properties of the
Pfaffian, these properties can actually be computed in poly-
nomial time in the size of the matchcircuit. The crucial ob-
servation behind this is a compositional theorem, which is
algebraic in nature, and states that the product of the charac-
ters of two constituent matchgates is the character of a com-
posite matchgate. Matchcircuits represent a new algorith-
mic method to construct polynomial time algorithms per-
forming certain seemingly exponential time computations.
Valiant [12] used these matchcircuits to show that a non-
trivial, though restricted, fragment of quantum circuits can
be simulated classically in polynomial time. It is not clear
at the moment what is the class of all quantum circuits that
can be simulated classically in this framework. More gen-
erally it is not clear what are the ultimate capabilities and
limitations of this new class of algorithms.

Subsequently, Valiant [13] further introduced the notion
of Holographic Algorithms. This theory is also based on
matchgates, but with the additional ingredient of a choice of
a set of linear basis vectors, through which the computation
can be expressed and interpreted. In this theory the match-
gates used are restricted to beplanar matchgates. Instead of
a character matrix, a planar matchgate is associated with a
signature. The computation is ultimately carried out by the
elegant FKT method [6, 7, 10]. Valiant obtained polynomial
time holographic algorithms for a number of problems, mi-
nor variations of which are NP-hard. The new algorithms
in this framework are quite exotic, e.g., in [16] a certain re-
stricted counting problem for SAT is shown be#P-hard and
its mod 2 version is⊕P-hard, and yet its mod 7 version is
solvable in P by holographic algorithms. Again the ultimate
capabilities and limitations of holographic algorithms are
not clear at this time. It is precisely this uncertainty thatis
most exciting to us.

Will this new algorithmic paradigm lead to a collapse
of complexity classes? The kinds of algorithms that are
produced by matchgate computations are quite unlike any-



thing before (aside from quantum algorithms). Valiant sug-
gested [13], “any proof of P6= NP may need to explain, and
not only to imply, the unsolvability” of NP-hard problems
using this approach. Our paper is a systematic investiga-
tion of the capabilities and limitations of the basic building
blocks of this theory, namely the matchgates.

It turns out that there is a rich internal structure to the
matchgates as expressed by the algebraic properties of Pfaf-
fian. In [12, 11], Valiant has found 5 equations, called
matchgate identities, which are necessary conditions for all
4 by 4 matchgate characters. With a slight restriction, these
5 matchgate identities are also sufficient for the case of 4
by 4 characters. The paper [8] also discusses matchgates as
related to quantum computing. The 4 by 4 matchgate char-
acters are important because they are used in the simulation
of quantum circuits.

The main results of this paper are concerned with this
internal structure, and provide a fairly complete picture
of general matchgates. The aim of this paper is theory-
building, not problem solving. We believe a solid founda-
tion for the theory is needed to obtain further positive, and
more importantly, negative results.

We state our main findings. It turns out that matchgates
of every size form an algebraic variety. We first find a sym-
metry as realized by a group action on the rows and columns
of the 4 by 4 character matrices, and express matchgate
identities in terms of determinantal minors. Then we find
a total of 10 matchgate identities. We prove that they con-
stitute a complete set of matchgate identities for 4 by 4 char-
acters. Then we use Jacobi’s theorem on compound matri-
ces to prove that the invertible 4 by 4 matchgate matrices
form a multiplicative group. That it is closed under matrix
multiplication is used in [12] as the basis for the quantum
simulation. Here we prove that if the character matrix is
invertible, its inverse is also the character matrix of some
matchgate.

More importantly we give results for general matchgates.
We define matchgate identities for matchgates with arbi-
trary k-inputs andl-outputs. Then we show that a set of
usefulGrassmann-Plücker identities [11] gives a complete
set of matchgate identities for any general matchgate.

Combined with results from [1], these characterizations
also apply to planar matchgates and their (standard) signa-
tures in the holographic algorithm framework. These have
been used as a foundation in the investigation of matchgrid
computations and holographic algorithms [4, 5]. In partic-
ular we include here a characterization of symmetric signa-
tures, which follows from these matchgate identities.

Our results have important implications for both upper
and lower bounds. By definition, even with a fixed number
of input and output nodes, a matchgate may consist of an ar-
bitrarily large number of internal nodes. Thus one can prove
the existence of a matchgate fulfilling certain computational

requirements by construction. But one cannot prove in this
way the non-existence of such a matchgate. An interesting
consequence of our proof is that when a required match-
gate exists, it can be realized by a weighted complete graph
consisting of essentially the external nodes plus at most one
omittable node. Thus the design of a required matchgate
boils down to the choice of

(

k+l
2

)

weights, wherek andl are
the numbers of input and output nodes. This makes it fea-
sible both to search, and in case of non-existence to prove
that this is so. The first negative results (lower bounds) in
this area all rely on this result [1, 16] (a preliminary ver-
sion of this paper appeared as ECCC TR06-018.) In [1] we
used results here to give non-existence theorems for certain
holographic algorithms. In a paper titled “Accidental Al-
gorithms” [16] Valiant showed a surprising mod 7 counting
problem solvable in P, as well as some lower bounds for
certain Satisfiability problem using holographic algorithms.
The lower bound proof relies on the results proved here.
In [3] we show, using results developed here and in [1], that
mod 7 is the only modulus for which Valiant’s “Accidental
Algorithm” exists for that problem. In [4, 5], the charac-
terization theorems of general matchgates developed in this
paper, namely Matchgate Identities, are also used in an es-
sential way. The results presented here serve as a foundation
for an in-depth study of the rich theory of matchcircuit and
holographic algorithms.

2 Background

Before we can describe our results, we will require quite a
few definitions. Most of these definitions have been intro-
duced by Valiant in [12, 13, 11]. We will give a brief recap
here.

We will be dealing with weighted undirected graphs
G = (V, E, W ), which are represented by skew-symmetric
adjacency matricesM . The Pfaffian of ann × n skew-
symmetric matrixM is a polynomial function computable
in polynomial time, satisfying(Pf(M))2 = det(M). We
assume the reader is acquainted with Pfaffians and Pfaf-
fian Sums; otherwise please take a brief look at the first
section of Appendix. We omit the definitions of Pfaffians
and Pfaffian Sums here, and our recap of other definitions
is brief. We remark that the use of Pfaffian Sums is only
needed when one allows the so-called omittable nodes. For
the most part one can ignore this complication, and consider
only matchgates without omittable nodes and consequently
no Pfaffian Sums, but only Pfaffians.

2.1 Grassmann-Pl̈ucker Identities

Let M be a skew-symmetric matrix, andA = {i1, . . . , ir}
wherei1 < . . . < ir. PfM (i1, . . . , ir), or whenM is clear
from the context, simplyPf(i1, . . . , ir) or Pf(A), is defined



as the Pfaffian of the matrix obtained by restrictingM to
rows and columns present inA, namelyi1, . . . , ir. When
the set notationA is used, we implicitly assume the indices
are in increasing order. Ifi1, . . . , ir are not in increasing
order, the sign will vary according to the parity of the per-

mutation

(

1 2 . . . r
i1 i2 . . . ir

)

, e.g.,PfM (i2, i1, . . . , ir) =

−PfM (i1, i2, . . . , ir) and so on. Ifi1, i2, . . . , ir are not all
distinct, thenPfM (i1, . . . , ir) is defined to be zero. The
notationPfM [i1, . . . , ir] will denote the Pfaffian after re-
moving the rows and columns of{i1, . . . , ir}. Note that
PfM [i1, . . . , ir] is the same asPf(M [A]), whereM [A] de-
notes the matrixM with rows and columns fromA re-
moved. Also, in the index list, we denote byî, the omission
of index i. For example,Pf(1, 2, 3̂, 4, 5) = Pf(1, 2, 4, 5)
etc.

The following theorem states the Grassmann-Plücker
(GP) identities.

Theorem 2.1. [9] For any n × n skew-symmetric ma-
trix M , and for anyI = {i1, . . . , iK} ⊆ [n] and J =
{j1, . . . , jL} ⊆ [n], the following is called the Grassmann-
Plücker identity (generated byI andJ),

0 =

L
∑

l=1

(−1)lPf(jl, i1, . . . , iK)Pf(j1, . . . , ĵl, . . . , jL)

+
K
∑

k=1

(−1)kPf(i1, . . . , îk, . . . , iK)Pf(ik, j1, . . . , jL). (1)

We will use the notationPf(t ◦ I) to denote the Pfaffian
Pf(t, i1, . . . , iK), assumingI = {i1, . . . , iK} is listed in
increasing order.

2.2 Matchgates and Matchcircuits

A matchgateΓ is a quadruple(G, X, Y, T ) whereG =
(V, E, W ) is a graph,X ⊆ V is a set ofinput nodes,
Y ⊆ V is a set ofoutputnodes, andT ⊆ V is a set of
omittablenodes such thatX, Y andT are pairwise disjoint,
and∀i ∈ T , if j ∈ X thenj < i and if j ∈ Y thenj > i.
We call the setX ∪ Y the externalnodes. Furthermore,
each external node is assumed to have exactly one incident
external edge. For nodes inX , the other end point of the
external edge is assumed to have index less than any node
in V and for nodes inY , the other end point has index more
than any node inV . The allowed matchings will be those
that saturate all the unomittable nodes and also an arbitrary
(possibly empty) subset ofT . Whenever we refer to the
Pfaffian Sum (denoted byPfS) of a matchgate fragment,
we assume thatλi = 1, if i ∈ T , and0 otherwise (See the
definition of Pfaffian Sum in the Appendix). We say that a
matchgateΓ hasnormal numberingif the numbers of nodes

in V are consecutive from1 to |V | andX, Y have minimal
and maximal numbers, respectively.

For Z ⊆ X ∪ Y , the characterχ(Γ, Z) of Γ with re-
spect toZ is defined to be the valueµ(Γ, Z)PfS(G − Z),
whereG − Z denotes the graph obtained after deleting the
vertices inZ together with their incident edges fromG and
the modifier µ(Γ, Z) ∈ {−1, 1} counts the parity of the
number of overlaps between matched edges inG − Z and
matched external edges. Here, the nodes inZ are assumed
to be matched externally. Since the index numbers of input
nodes are always less than any omittable node and those of
output nodes always greater, it can be shown that the mod-
ifier is well-defined as it depends only onZ and not on the
actual matchings inG − Z.

Thecharacter matrixχ(Γ) is defined to be the2|X|×2|Y |

matrix where rows are indexed by subsetsX ′ ⊆ X and
columns by subsetsY ′ ⊆ Y and the entries areχ(Γ, Z) for
variousZ = X ′ ∪ Y ′. To define the ordering of the rows
and columns of this matrix precisely, we need to define a
1-1 correspondence between subsets ofX (and respectively
subsets ofY ) and the rows (and respectively columns) of
the matrix. Here, we assume that the character matrices
arenormally orderedi.e. rows and columns are indexed by
binary bit strings of length|X | and |Y | respectively, and
they correspond to subsets in lexicographic order. Consider
an entry(i, j) of χ(Γ), where0 ≤ i < 2|X| and0 ≤ j <
2|Y |. The subsetX ′ ⊆ X corresponding toi is obtained
as follows. Ifv ∈ X is themth smallest input vertex, then
v ∈ X ′ iff the mth bit from the right in the binary expansion
of i is 1. Similarly, themth largest output vertex is inY ′

iff the mth bit from the right inj is 1. And Z = X ′ ∪
Y ′. E.g., if X = {1, 2} andY = {n − 1, n}, wheren =
|V | is the number of vertices inΓ. Then the ordering of
rows is∅, {1}, {2}, {1, 2}, and the ordering of columns is
∅, {n}, {n− 1}, {n− 1, n}.

A matchcircuit is a way of combining matchgates us-
ing connecting edges. Informally, all inputs/outputs of con-
stituent matchgates have an external edge. The external
edges are connected to each other with an odd number of
connecting edges. The matchgates are arranged in a layered
fashion from left to right where the connecting edges sep-
arate these layers. The edges above or below a matchgate
are referred to asparallel edges. The attachment of mod-
ifiers to a character is to ensure that all “overlaps” in the
evaluation of the Pfaffian of the entire matchcircuit works
out properly. Figure 2 shows a typical matchcircuit. We do
not present the detailed definition here because we won’t be
dealing too much with matchcircuits. Note that the relative
ordering of all the vertices are carefully placed in a layered
matchcircuit, and is schematically depicted in Figure 2 as
well as in Figure 1. In Figure 1, one can verify that ev-
ery edge on the top line outside of the matchgatesΓ1, Γ′

andΓ4 (there are 16 of them) always incurs collectively an



even number of overlaps with all such edges from the bot-
tom line, except those 2 parallel edges aboveΓ2 andΓ3 (see
Theorem 3.2). We refer the reader to [12] for a more formal
definition. The character of a matchcircuit is defined in the
same way as the character of a matchgate except that there
is no modifierµ as we do not consider the matchcircuit it-
self to have any external edges. Another difference is that
1 and0 have opposite meanings with respect to deletion of
external nodes in matchgates and matchcircuits.

In [13] Valiant also introducedplanar matchgatesin the
framework of holographic algorithms. A planar matchgate
Γ with m external nodes comes with a planar embedding,
where the external nodes are ordered counter-clockwise on
the external face. For a planar matchgateΓ with m external
nodes, we assign astandard signaturewhich has2m entries

Gi1i2...im = PerfMatch(G − Z),

wherePerfMatch(G − Z) =
∑

M

∏

(i,j)∈M wij , is a sum
over all perfect matchingsM in G − Z, andZ is the sub-
set of removed external nodes having the characteristic se-
quenceχZ = i1i2 . . . im. (If there are omittable nodes in
Γ they must be on the external face, and then the sum over
M may range over matchings which saturate all the unomit-
table nodes.) PerfMatch is called the perfect matching poly-
nomial.

In many ways, the definitions for planar matchgates and
signatures are more intuitive than general matchgates and
characters. It is a remarkable fact proved in [1] that these
two categories of objects are essentially the same. Planar
matchgates and signatures have seen more research activi-
ties; but this does not render the character theory useless.In
fact the only way we know how to prove the fundamental
structural properties of signatures is through results of this
paper, in terms of the character theory with Pfaffians. Also
certain constructions of planar matchgates and signatures
are known to exist (by our general theory) and are explicitly
known only via the proof of the general realizability theo-
rem in this paper (followed by transformations from [1]). In
short, what we prove here for matchgates and characters ap-
ply to planar matchgates and standard signatures, and that
is the only known proof route for these theorems on signa-
tures.

3 2-input 2-output Matchgates

3.1 Complete Set of Identities

In [11], Valiant presented a set of five equations on the en-
tries of the character matrix of 2-input, 2-output matchgates.
These were called matchgate identities. (In the explicit list-
ing of Valiant’s equations, we will retain Valiant’s notation
and number the rows and columns of the 4 by 4 character

matrix from 1 to 4, instead of 0 to 3 written in binary bits 00
to 11, as from Sec. 2.2.) It was shown that the character of
every 2-input, 2-output matchgate satisfies these equations.
Furthermore, if a matrixB satisfies all these identities and
an additional constraint, namelyB44 6= 0, then there is a
matchgate having characterB.

Let Γ be a 2-input, 2-output matchgate having charac-
ter B. Assume that the matchgate is normally numbered
and its character is normally ordered. Then Valiant’s five
matchgate identities are quoted as follows [11]:

B11B44 − B22B33 − B14B41 + B23B32 = 0

B21B44 − B22B43 − B41B24 + B23B42 = 0

B31B44 + B33B42 − B41B34 − B32B43 = 0

B13B44 + B33B24 − B14B43 − B23B34 = 0

B12B44 − B22B34 − B14B42 + B32B24 = 0

It turns out that there are interesting symmetries buried
in this set of identities. For example,B11B44 − B14B41

is the determinant of the submatrix ofB obtained by re-
moving rows and columns 2 and 3. And the first matchgate
identity asserts that this is equal to the minor ofB at rows
and columns 2 and 3.

We will express this in a more compact notation. De-
note byD(ij, kl) the determinant of the2 × 2 submatrix
of B consisting of rowsi andj, and columnsk andl, i.e.,
D(ij, kl) is the following determinant, wherei < j and
k < l,

∣

∣

∣

∣

Bik Bil

Bjk Bjl

∣

∣

∣

∣

We note that all five identities above can be written as the
determinant of a2×2 matrix being equal to the determinant
of another2×2 matrix. These matrices are (not necessarily
contiguous) sub-matrices of the character matrix. In this
notation, we can write the identities above as

D(14, 14) = D(23, 23) D(24, 14) = D(24, 23)
D(34, 14) = D(34, 23) D(14, 34) = D(23, 34)
D(14, 24) = D(23, 24)

The symmetry is as follows: We consider the set
of
(

4
2

)

unordered pairs of{1, 2, 3, 4}, denoted byS =
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. An involu-
tion ρ flips the pair{1, 4} and{2, 3}, and leaves everything
else fixed. Thusρ is the permutation

(

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}

)

In terms of thisρ, the above five identities can all be
written as

D(p, q) = D(ρ(p), ρ(q)),



where the ordered pair (of unordered pairs)(p, q) =
(14, 14), (24, 14), (34, 14), (14, 34) and (14, 24), respec-
tively.

It turns out that we may apply the permutationρ to
any ordered pair(p, q), wherep, q ∈ S. In order that
(ρ(p), ρ(q)) is not identical to(p, q), (lest we get a trivial
statement,) we must have at least eitherp or q (or both)
equal to{1, 4} or {2, 3}. In terms of a permutation group,
we have an action by the involutionρ× ρ on the setS × S,
which has 10 non-trivial orbits of two elements each (and
16 fixed points).

This suggests that there are 10 matchgate identities. It
turns out that indeed one can prove these 10 matchgate iden-
tities are all valid for all 2-input 2-output matchgates. The
proof uses the Grassmann-Plücker identities and is omitted
here. Here are the 5 additional identities:

D(12, 14) = D(12, 23) D(13, 14) = D(13, 23)
D(14, 12) = D(23, 12) D(14, 13) = D(23, 13)
D(14, 23) = D(23, 14)

More succinctly,

D(p, q) = D(ρ(p), ρ(q)), (2)

for any(p, q) ∈ S × S.

Theorem 3.1. If B is the character matrix of a 2-input 2-
output matchgate over any fieldF , thenB satisfies the 10
matchgate identities.

Now we show the completeness of these identities.
(From now on, it will be more convenient to use binary
bit strings to index rows and columns as stated in Sec. 2.2.
Thus, in the next Theorem, rows and columns are indexed
from 0 = 00 to 3 = 11.)

Theorem 3.2. LetB be a4× 4 matrix over a fieldF satis-
fying the 10 matchgate identities. Then there exists a match-
gateΓ such thatχ(Γ) = B.

Proof. The main idea of this proof is simple. IfB is iden-
tically 0 then it is trivially realizable. IfB11,11 6= 0, we
can use the proof from [12]. IfB11,11 = 0 but some other
entry is not 0, then we try to transformB to B′ such that
B′

11,11 6= 0, while still satisfying all the 10 matchgate iden-
tities. The proof below is not the most efficient for this spe-
cial case of 4 by 4. But this method can be generalized to
prove Theorem 4.2.

Our general technique is to compose matchgates to form
a matchcircuit, which is then transformed into a matchgate
that realizes the given matrix.

We assumeB is not the zero matrix, and supposeBrc 6=
0. Let r be written as a binary bit string in{0, 1}2. Let r =
r⊕ 11 be the bit-wise XOR ofr with 11. Define a bijection
αr : {0, 1}2 → {0, 1}2, which mapsx 7→ x ⊕ r. It is clear

thatαr(r) = 11, andαr is an involution, i.e.,αr = α−1
r .

Also its action on any bit ofx is independent of other bits.
Let αc be similarly defined in terms ofc ∈ {0, 1}2. Let B′

be the matrix obtained after applying the transformationsαr

andαc, respectively, to the (indices of) rows and columns
of B. We now have,B′

11,11 6= 0. Sinceαr andαc are their
own inverses, applying them toB′ yieldsB.

It can be verified (essentially because the actions ofρ
and that ofαr and ofαc commute) that the above set (2)
of matchgate identities is invariant under any such trans-
formation. If B satisfies the matchgate identities, then so
doesB′. From the construction in [12] there is a match-
gateΓ′ that realizesB′. Now to construct the matchgateΓ
to realizeB, we first make a matchcircuitΓ′′ with charac-
ter matrixB as shown in Figure 1. Each of the matchgates
Γ1, Γ2, Γ3, Γ4 is eitherΓ(1) or Γ(2), defined below, depend-
ing on whether that bit ofr (or c) is 1 or 0. All the par-
allel edges above any gate equal toΓ(2) are given weight
−1. (This factor of−1 is needed to compensate for an odd
number of overlaps.) Here,Γ(1), Γ(2) are1-input,1-output
matchgates whereΓ(1) simply “transmits” its input andΓ(2)

“flips” its input. The character matrix ofΓ(1) is the identity

matrix and the character matrix ofΓ(2) is

(

0 1
1 0

)

. More

concretely,Γ(2) consists of a single edge of weight 1;Γ(1)

consists of a path of 2 edges each of weight 1.

The Main Theorem in [12] (the basis for the quantum
simulation) can be extended to prove the Extended Main
Theorem, given in the Appendix. It can be verified that the
construction here satisfies the conditions of the Extended
Main Theorem. Therefore, the character matrix of this
matchcircuit is the product of the character matrices of the
five constituent matchgates, each extended to two inputs,
two outputs. (Here “extending” a one-bit matchgate to two
bits means algebraically a tensor product with the 2 by 2
identity matrix.) This product isB. To see that, we look
at the matchcircuit in a slightly different way. The overall
action of the matchcircuit on its inputs is the composition of
the actions of the matchgates. The action ofΓ′ is described
by B′. Therefore, the character matrix ofΓ′′ is B.

Now the matchgateΓ is obtained by deleting the input
and output nodes of the matchcircuit and the edges incident
to them. The new leftmost/rightmost nodes are now consid-
ered as input/output nodes. The edges that we deleted have
no overlap among themselves, and they are now considered
as external edges of the matchgateΓ. Recall that1 and0
have opposite meanings with respect to deletion of external
nodes in matchgates and matchcircuits, and since match-
gates are assumed to have external edges while matchcir-
cuits don’t, the character ofΓ is exactly the same as that of
Γ′′. HenceΓ realizesB.



3.2 Group Property

We show that the subset of invertible character matrices
of two input, two output matchgates forms a multiplica-
tive group. It is relatively easy to see that the product of
two character matrices is itself a character matrix [12] by
composing two matchgates in sequence. The composed
matchgate has the product matrix as its character matrix,
because enumerating all (perfect) matchings in the com-
posed matchgate is precisely reflected by matrix multipli-
cation. This is an essential ingredient in Valiant’s classical
simulation of a fragment of quantum computation. Here we
prove a more surprising result that the inverse of a character
is also a character. We hope that this will provide a better
understanding of the scope of what is computable by these
matchgates, including the scope of quantum operations they
can simulate.

Let A be anm×n matrix. A minor of orderk of A is the
determinant of ak by k submatrix ofA. Thekth compound
matrix of A is a matrixA[k] of order

(

m
k

)

×
(

n
k

)

, where we
arrange all the minors ofA of orderk in lexicographic order.

The matchgate identities have an elegant expression in
terms of the compound.

Theorem 3.3. If B is a4 × 4 character matrix of a match-
gate, then the matchgate identities state precisely thatB[2]

is invariant under the following operation: simultaneously
interchange row 3 with row 4 and column 3 with column 4.

Proof. The relevant rows and columns are illustrated below.
The proof follows from the matchgate identities.

2

6

6

6

6

6

4

D(12, 14) D(12, 23)
D(13, 14) D(13, 23)

D(14, 12) D(14, 13) D(14, 14) D(14, 23) D(14, 24) D(14, 34)
D(23, 12) D(23, 13) D(23, 14) D(23, 23) D(23, 24) D(23, 34)

D(24, 14) D(24, 23)
D(34, 14) D(34, 23)

3

7

7

7

7

7

5

Theorem 3.4. Let B be a4 × 4 matrix over a fieldF that
satisfies the matchgate identities. Suppose thatB is invert-
ible. ThenB−1 also satisfies the matchgate identities.

We omit the proof here, which uses Jacobi’s Theorem on
compound matrices. (It is also possible to give a brute force
verification by computer algebra, using the results from the
previous section that the 10 matchgate identities are neces-
sary and sufficient.)

In case whenB is not an invertible matrix, we have the
following:

Corollary 3.1. LetB be a4 × 4 matrix over a fieldF that
satisfies the matchgate identities. Thenadj(B) also satisfies
the matchgate identities.

4 General Matchgates

We now move on to generalk-input, l-output matchgates.
Specifically, our goal is to find out whether there is a set
of equations that completely characterizes the charactersof
general matchgates, just like the 10 equations we obtained
for 2-input, 2-output matchgates.

Basically, what we aim to prove is that the GP identi-
ties characterize all the character matrices. But we have to
be careful. There are various kinds of Pfaffians that occur in
the GP identities. In particular, there are Pfaffians of subma-
trices obtained by deleting rows and columns corresponding
to some internal nodes of the matchgate. These Pfaffians do
not correspond to any entries of the character matrix. We
have to carefully choose the identities that we want to clas-
sify asmatchgate identitiesfor general matchgates.

Consider a normally numbered, normally orderedk-
input, l-output matchgateΓ havingn ≥ k + l vertices. We
will only consider matchgates without omittable nodes; the
case with matchgates having omittable nodes will be dis-
cussed in the Appendix. LetM be its skew-symmetric ad-
jacency matrix. Its character matrixB is a2k × 2l matrix
with rows and columns indexed from0 through2k − 1 and
2l − 1, respectively. LetU be the set of nodes which are
not inputs or outputs. Since there are no omittable node,
each entry ofB is either0 or the Pfaffian of a submatrix
multiplied with the modifier. Leti1 = 1, . . . , ik = k be the
inputs ofΓ and leto1 = n, . . . , ol = n− l+1 be its outputs.

We need to introduce a little more compact notation.
Given a row indexr where0 ≤ r ≤ 2k − 1. Let X ′ be
the subset of inputs corresponding to the1’s in the binary
expansion ofr. We will user to refer to the indexr as well
as the setX ′ whenever the intended meaning is clear from
the context. For example,PfM [X ′] andPfM [r] denote the
same thing. Similar notation applies to the column indices.
Also, note that row indices and column indices refer to dis-
joint set of nodes inΓ. So we can combine these two to-
gether. For example, ifr is a row index andc is a column
index, thenPfM [rc] denotes the Pfaffian ofM with all rows
and columns corresponding to the1’s in r andc deleted. For
any entry of the characterB, the modifierµ depends only
on the row index and the column index. Letµr denote the
contribution of row indexr to the modifier value, and letµc

denote the contribution of the column index. The modifier
at entryBrc is µrc = µrµc. In this notation, we can write
Brc = µrcPfM [rc] or simplyBrc = µrcPf[rc].

Now consider all the GP identities stated in (1) obtained
from subsetsI andJ of {1, . . . , n}. To be able to consider
this as a matchgate identity (i.e. in terms of the entries of the
character matrix instead of the Pfaffians), it needs to satisfy
the following two properties:

1. Every non-zero Pfaffian of (1) should be the Pfaffian
of a submatrix obtained by deleting only (rows and



columns corresponding to) some inputs and outputs of
Γ.

2. The GP identity should be independent ofn. (The
identity may depend onk and l, but not on the num-
ber of internal nodes.)

The first property can be satisfied if we restrict ourselves
to the GP identities obtained fromI andJ such thatU ⊆
I ∩ J . Any such GP identity will be referred to asuseful.

Lemma 4.1. If U ⊆ I∩J , then all non-zero Pfaffians in the
GP identity are Pfaffians with only some inputs or outputs
deleted.

Proof. All the summands in a GP identity are products of
two Pfaffians which are on subsets obtained by moving
some element fromI to J or from J to I. If any element
of U is moved fromI to J (or from J to I), then that will
appear twice inJ (or I) and hence that term is zero. If any
other element is moved, both the Pfaffians contain all ofU ,
having only some inputs or outputs deleted.

To prove that all the useful GP identities are independent
of n is slightly more difficult. First we have to state a lit-
tle more precisely what we mean by being independent of
n. For this purpose, first we represent all the Pfaffians in a
GP identity by the indices that are deleted, rather than us-
ing the indices that are retained as in (1). In other words,
we use thePf[ ] notation instead ofPf( ). All the indices
that now appear are indices of inputs or outputs. We replace
these indices by the symbolsi1, . . . ik, ando1, . . . , ol. We
claim that the GP identity is now independent ofn. Ba-
sically this means that the coefficient of every term in the
sum (which is either+1 or −1) is independent ofn. We
note that the number of terms clearly only depends onk and
l, being determined by the respective subsets of{i1, . . . ik}
and{o1, . . . , ol}.

Lemma 4.2. All the useful GP identities are independent of
n.

Proof. Let I andJ be supersets ofU . Supposei′1 < . . . <
i′a are the inputs inI ando′1 > . . . > o′b are the outputs in
I. Similarly, let i′′1 < . . . < i′′c ando′′1 > . . . > o′′d be the
inputs and outputs inJ . Consider the GP identity obtained
from I andJ . Let’s look at a term where inputi′e is moved
from I to J . The case of moving fromJ to I is symmetric.
This term can be written as

(−1)ePf(I − {i′e})Pf(i′e ◦ J).

(Recall that in this notation the elements inJ , but noti′e, are
assumed to be listed in increasing order.) To write this term
in Pf[ ] notation, we have to first arrange the terms in the
second Pfaffian in increasing order. This requires movingi′e

to its appropriate position inJ . This position depends on the
input i′e and the inputsi′′1 , . . . , i′′c in J which is independent
of n. The sign(−1)e only depends on the inputs inI which
is again independent ofn. Therefore, the coefficient of this
term is independent ofn.

Now let’s consider what happens when we move an out-
puto′f from I to J . The term in the GP identity is

(−1)a+|U|+b−f+1Pf(I − {o′f})Pf(o′f ◦ J).

The only part in(−1)a+|U|+b−f+1 which depends onn is
(−1)|U|. Again, we need to moveo′f to its correct position
so that the indices in the second Pfaffian are in increasing
order. This involves movingo′f across all inputs inJ , all
elements ofU , and some of the outputs inJ . Again, the
only part that depends onn is moving across elements of
U which contributes a sign(−1)|U|. The overall sign is,
therefore, independent ofn.

Now we know that all the useful GP identities are truly
matchgate identities. We still need to replace the Pfaffians
by entries of the characterB. To do that, we’ll need some
notation. SupposeI is a superset ofU . We want to define
the signµI . Let IR be the set of inputs not inI. Let IC

be the set of outputs not inI. ConsiderIR as binary bits,
µIR

is defined earlier as a± contribution to the modifier.
Similarly µIC

is defined. Then we letµI = µIR
µIC

. Given
an inputt, let αI

t be the number of inputsin I less thant
andβI

t be the number of inputs more thant which arenot
in I.

Fix someI andJ such thatU ⊆ I ∩ J , As before, sup-
posei′1 < . . . < i′a are the inputs ando′1 > . . . > o′b are
the outputs inI and i′′1 < . . . < i′′c ando′′1 > . . . > o′′d
are the inputs and outputs inJ . The non-zero terms in the
GP identity generated byI andJ will only involve moving
somet ∈ I∆J , the symmetric difference. Now consider an
input t ∈ I − J . The term corresponding to movingt from
I to J can be written as: (where we writeB∗ = BIR∪{t},IC

andB∗∗ = BJR−{t},JC
, and for notational convenience, we

write the negation of (1) i.e., starting the sum with+)

(−1)αI
t Pf(I − {t})Pf(t ◦ J)

= (−1)αI
t (−1)αJ

t Pf(I − {t})Pf(J ∪ {t})

= (−1)αI
t (−1)αJ

t µI(−1)αI
t (−1)βI

t B∗Pf(J ∪ {t})

= (−1)αJ
t µI(−1)βI

t B∗Pf(J ∪ {t})

= (−1)αJ
t µI(−1)βI

t B∗µJ (−1)αJ
t (−1)βJ

t B∗∗

= (−1)βI
t (−1)βJ

t µIµJB∗B∗∗

Here in the first equality the factor(−1)αJ
t comes from

movingt in t◦J to its proper place inJ∪{t}. In the second
equality we replacePf(I − {t}) by µIB∗, but we need to
make an additional modification on the modifierµI by the



factor(−1)αI
t (−1)βI

t . The two factors(−1)αI
t cancel in the

third equality. In the fourth equality we replacePf(J ∪{t})
by µJB∗∗, but again we need to make an additional mod-
ification on the modifierµJ by the factor(−1)αJ

t (−1)βJ
t .

Finally the two factors(−1)αJ
t cancel in the fifth equality.

SinceµI andµJ appear in all terms of this GP identity,
we can drop this term. So, the term obtained by moving
input t from I to J can be written as

(−1)βI
t (−1)βJ

t BIR∪{t},IC
BJR−{t},JC

. (3)

We can write a similar expression whent is an output.
The above form will allow us to prove an important prop-

erty of the GP identities. Letb be an input bit position be-
tween1 andk. Consider a permutationσb on the rows of
the character matrixB which, given a rowr, maps it to
row r′ such thatr andr′ differ only in thebth bit. I.e. σb

flips thebth bit. This induces a transformationρb on the GP
identities. We have the following lemma.

Lemma 4.3. Given anyb, 1 ≤ b ≤ k, ρb is a permutation
on the GP identities. Similarlyρb is a permutation for any
output nodeb.

Proof. Given a setI. Define the setI ′ = I∆{b} to be the
symmetric difference. We claim the following: IfG1 is the
GP identity generated byI andJ , thenG2 = ρb(G1) is the
GP identity generated byI ′ andJ ′.

First, let’s forget about the signs of the terms appearing
in G1 andG2. ThenG1 maps toG2 term-for-term. Con-
sider the case whenb ∈ I ∩ J . Then, any non-zero term in
G1 involves moving an elementt 6= b, from I to J (or from
J to I). This term maps to the term inG2 that is obtained
by movingt from I ′ to J ′ (or fromJ ′ to I ′). This also holds
whenb ∈ I − J andt 6= b. The term obtained by moving
b ∈ I −J from I to J maps to the term obtained by moving
b ∈ J ′ − I ′ from J ′ to I ′. The other cases whenb /∈ I ∪ J
or b ∈ J − I are similar.

Now we need to show that the signs are also the same.
For now, let’s consider a term inG1 obtained by moving an
input t from I to J . As we saw above, the sign of this term
in G1 is (−1)βI

t +βJ
t and of the corresponding term inG2

is (−1)βI′

t +βJ′

t . Our analysis depends onb. First, if b is an
output vertex, or an input such thatb ≤ t, thenβI

t = βI′

t and
βJ

t = βJ′

t because these only depend on the inputs more
thant. And if b > t is an input vertex, thenb is counted
exactly once inβI

t together withβI′

t , and also exactly once
in βJ

t together withβJ′

t . Thus, it is counted exactly twice
amongβI

t , βJ
t , βI′

t , βJ′

t . It follows that in any case, the sum
βI

t + βJ
t + βI′

t + βJ′

t is always even. Therefore, the signs
are also the same.

The case whent is an output node is similar and is omit-
ted here. This completes the proof.

Observe that now we can allow a permutation of the ma-
trix entries which is a composition of several input/output
bit-flips because all these are independent of each other.
The final induced transformation on the GP identities is still
a permutation on the set of GP identities. This gives the
following theorem.

Theorem 4.1. If B is a 2k × 2l matrix that satisfies all the
matchgate identities. LetB′ be the matrix obtained fromB
by applying, possibly more than one, bit-flips on the rows
and columns. ThenB′ also satisfies the matchgate identi-
ties.

Now we are ready to prove the completeness theorem.
We say that a2k × 2l matrix B is realizable if there is a
matchgateΓ such thatχ(Γ) = B. We say that a matrix is
even (odd) ifBij = 0 wheneverH(i) + H(j) is odd (even)
whereH(i) denotes Hamming weight, i.e., the number of
1’s in the binary expansion ofi. The character matrix of
a matchgate without omittable nodes is either even or odd
depending on whethern is even or odd.

Theorem 4.2. Letk, l be non-negative integers. LetB be a
2k × 2l matrix which is either even or odd. ThenB is the
character matrix of ak-input, l-output matchgateΓ if and
only if B satisfies all the useful GP identities.

Proof. We only need to prove the “if” part. If the matrix
B is identically zero, it is realizable by a matchgate. So we
can assume thatB is not identically zero.

First assume thatB2k−1,2l−1 = 1. If B2k−1,2l−1 = α is
non-zero but not1, then we can simply divide all the entries
in B by α. Once we obtain a matchgate for that, we add
two new internal vertices with an edge of weightα between
them. The two new vertices have consecutive indices so
that there are no overlaps with anything else. This will have
characterB.

For B2k−1,2l−1 = 1, the matchgateΓ is a complete
graph onk + l vertices. It hask inputs andl outputs
(and no internal nodes). Supposei and j are two ver-
tices. Consider the rowr and columnc such thatrc =
{1, . . . , k + l} − {i, j}, i.e. the entryBrc of the matrix
corresponds to all nodes excepti andj being deleted. The
weight of the edge(i, j) is simply µrcBrc. Let the skew-
symmetric adjacency matrix ofΓ beM .

We claim that the character matrix ofΓ, χ(Γ), is equal to
B. By construction, all the entries ofB with total Hamming
weight (i.e. Brc where the total number of1’s in rc is) at
leastk + l − 2 are equal to those inχ(Γ). (By convention,
the Pfaffian of a 0 by 0 matrix is 1.) Now we proceed by
downward induction on the total Hamming weightH(r) +
H(c). Consider any entryBrc such thatm = H(r) + H(c)
is less thank + l − 2, and assume that the claim holds for
all entries of weight> m. Let a1 < . . . < am be the
bits that are1 in rc. Let 1 ≤ a′ ≤ k + l be an index



not equal to any of these. Consider the GP identity with
I = {1, . . . , k + l} − {a1, . . . , am, a′} andJ = {a′}. This
identity is of the form:

PfM [a1, . . . , am]PfM ()

=
∑

b6=a′,a1,...,am

(±)PfM [b, a′, a1, . . . , am]PfM (b, a′)

Note thatPfM () = 1 = χ(Γ)2k−1,2l−1 = B2k−1,2l−1. The
right hand side is a sum of products of two terms. Each term
is the Pfaffian ofM with a superset ofa1, . . . , am removed.
These correspond to entries ofχ(Γ) andB in positions with
total Hamming weight strictly more thanm. (Note thatk +
l − 2 > m.) SinceB is equal toχ(Γ) on all such entries
and sinceB andχ(Γ) both satisfy the GP identities, we see
thatBrc = χ(Γ)rc. This completes the proof for the case
B2k−1,2l−1 6= 0.

Now supposeB is not identically zero butB2k−1,2l−1 =
0. LetBij be a non-zero entry inB. We use bit-flips to map
i andj to 2k − 1 and2l − 1 respectively to get a matrixB′

such thatB′
2k−1,2l−1 6= 0. By Theorem 4.1,B′ also sat-

isfies the GP identities. LetΓ′ be a matchgate that realizes
B′. Then we can constructΓ that realizesB by using a con-
struction similar to what we used in the 2-input, 2-output
case, as shown in Figure 1.

Actually, the proof of the above theorem also works in
the case when we allow omittable nodes too i.e. the ma-
trix is neither even nor odd. First note that any matchgate
is equivalent to a matchgate with an even number of nodes
and exactly one omittable node which has a number less
than the output nodes but more than all other nodes ([12]).
We need to change the definition of useful GP identity to
mean that every Pfaffian has only some inputs/outputs and
possibly, the omittable node deleted. In that case, we can in-
terpret any such Pfaffian as a Pfaffian sum of the matchgate
with some inputs/outputs deleted which then corresponds
to the character entries. By using similar arguments, we can
prove that all useful GP identities are independent ofn and
the analog of theorem 4.1 that input/output bit-flips induce
a permutation on the GP identities. The completeness theo-
rem is proved in the Appendix.

From the proofs of theorem 4.2 and theorem 7.1 (in the
appendix), we see that we need onlyO(k + l) vertices to
realizeB. This is interesting because in the definition of
matchgates, we allow ak-input, l-output matchgate to have
an arbitrary number of internal nodes. We now know that
any such matchgate is equivalent to another with onlyO(k+
l) nodes. This makes it possible to prove the non-existence
of certain matchgates.

Corollary 4.1. Let Γ be anyk-input, l-output matchgate.
Then there is another matchgateΓ′ having onlyO(k + l)
vertices such thatχ(Γ) = χ(Γ′).

5 Realizability of Signatures

In [13] Valiant introduced the theory of Holographic Al-
gorithms. Here the basic objects are planar matchgates and
their signatures. (In this paper we do not consider signatures
of a planar matchgate under a basis transformation. Without
this transformation, we only consider thestandardsigna-
tures as defined in Sec. 2. Also for simplicity in the follow-
ing discussion we will not consider omittable nodes.) These
planar matchgates are connected to form matchgrids which
are the counter parts to matchcircuits. As mentioned ear-
lier in Section 2, we have accomplished a unification of the
matchcircuit/character theory and the matchgrid/signature
theory in [1].

Roughly speaking, this unification is accomplished as
follows. Given a planar matchgate with a signatureG, de-
fined by the perfect matching polynomial PerfMatch, one
uses the FKT algorithm to show that each entry ofG is
equal to a corresponding Pfaffian of the submatrix of asin-
gle skew-symmetric matrixM , where the submatrix is ob-
tained by removing the appropriate rows and columns ofM .
The skew-symmetric matrixM is obtained from the given
skew-symmetric adjacency matrix of the planar matchgate
graph, by running the FKT algorithm. The FKT algorithm
is applied once to the planar matchgate graph with no ver-
tex removed; but conceptually one can think of it being
applied simultaneously to the exponentially many induced
subgraphs of the matchgate with various external nodes re-
moved. By the property of the FKT algorithm, which only
assigns a±1 factor to each edge, this gives a single consis-
tent weighted altered graph. To each entry of the signature
G, the corresponding Pfaffian of the submatrix becomes an
entry of the character of a matchgate, without the modifier.
This is called the naked character in [1].

In many ways, it is simpler to discuss the structural prop-
erties of a naked character [1] than a character with the mod-
ifiers, in particular with the Matchgate Identities. The mod-
ifiersµ are defined in order to account for additional cross-
overs when matchgates are connected within a matchcircuit.
But in terms of the character matrix, the modifiers amount
to a multiplication of a±1 factor along every row and ev-
ery column, where the value of each row (column) factor is
determined by the row (column) index. Thus the set of all
Matchgate Identities is transformed to the set of Matchgate
Identities for naked characters, in a one-to-one fashion.

Now we discuss the technically more interesting reverse
direction from (naked) characters to signatures. We take a
general (not necessarily planar) matchgateΓ with a naked
characterχ(Γ), and realize it as the signature of a planar
matchgate. This is done by a specific embedding of all the
vertices ofΓ on a semi-circle [1], and then replacing each
physical crossing of a pair of edges by a crossover gadget
from [13]. This produces a planar matchgateΓ′. One then



argues that the PerfMatch value for each signature entry of
Γ′ is the same as the corresponding Pfaffian value of the
naked character ofΓ.

It follows that Theorem 4.2 also applies to planar match-
gates and their signatures. More specifically, a set of val-
ues can be the standard signature of a planar matchgate
(without omittable nodes) iff they satisfy all the parity re-
quirements and all theusefulGrassmann-Plücker identities.
Thus, we have the following three categories of objects all
equivalent to each other: Signatures of planar matchgates,
naked characters of planar matchgates, and naked charac-
ters of general (not necessarily planar) matchgates. And of
course, characters and naked characters are related to each
other by the modifiers (which are, in some sense, external
to the matchgates). The character theory can be viewed as
primarily algebraic, while signatures of planar matchgates
can be viewed as its geometric realization. Another useful
observation derived from this dual perspective is that one
can really unify the notions of input and output nodes of a
general matchgate; the salient feature is its circular ordering
as external nodes of a planar matchgate represented by its
signature.

However, there is a subtle point concerning the equiv-
alence of signatures and (naked) characters expressed as
Pfaffians. To a signature tensorG satisfying all the Match-
gate Identities (and the parity requirements), Theorem 4.2
gives a realization via the character of a complete graph
without internal nodes. (Technically this is the case with
G11...1 = 1. In general, we need to “flip” some external
nodes, thus introduce a linear number of internal nodes.)
However, the realization as a planar matchgate for the sig-
natureG may have some internal nodes, necessitated by the
introduction of the cross-over gadgets (see below). Thus it
is not the case that we can realizeG as a signature without
internal nodes. IfG has aritym, this process may introduce
O(m2) internal nodes.

Let’s consider exactly how Matchgate Identities are ex-
pressed for the signatures. LetG be the signature of a pla-
nar matchgate withm external nodes. Since each signature
entry can be viewed as a Pfaffian (via the FKT) we have
oneusefulGrassmann-Plücker identity for each pair of sub-
setsI andJ both containing all the internal nodes. It is
clear that the only non-zero terms in the Grassmann-Plücker
identity involve moving elements in the symmetric differ-
enceI∆J , which is a subset of the external nodes. We now
ignore the internal nodes and considerI andJ as subsets
of the external nodes, (under a circular shift) identified with
[m] = {1, 2, . . . , m}. Suppose

I∆J = {i1, . . . , ik1
, ik1+1, . . . , ik2

, ik2+1, . . . , ik3
, . . .},

wherei1 < · · · < ik1
< ik1+1 < · · · < ik2

< ik2+1 <
· · · < ik3

< . . . in the order of the index set{1, 2, . . . , m},

and wherei1, . . . , ik1
∈ I − J , ik1+1, . . . , ik2

∈ J − I,
ik2+1, . . . , ik3

∈ I − J , and so on.
Every non-zero term in (1) involves moving either an el-

ement fromI − J to J or from J − I to I. For ij , j =
1, . . . , k1, the term in (1) is(−1)jPf(I − {ij})Pf(ij ◦ J).
Note thatij is already in its right place with respect toJ
within ij ◦ J . For ij , j = k1 + 1, . . . , k2, the term in (1)
is (−1)j−k1Pf(ij ◦ I)Pf(J − {ij}). When we moveij to
its right place with respect toI within ij ◦ I, namelyk1

places to the right, this incurs(−1)k1 . Thus the term be-
comes(−1)jPf(I ∪ {ij})Pf(J − {ij}), whereI ∪ {ij} is
assumed to be in increasing order.

In this way it is easy to see that all the useful matchgate
identities on a realizable standard signatureG of arity m
can be expressed as follows:
Matchgate Identities for Signatures: A patternα is an
m-bit string, i.e.,α ∈ {0, 1}m. A position vectorP =
{pi}, i ∈ [l], is a subsequence of{1, 2, . . . , m}, i.e., pi ∈
[m] andp1 < p2 < · · · < pl. We also usep to denote them-
bit string, whose(p1, p2, . . . , pl)-th bits are1 and others are
0. Let ei ∈ {0, 1}m be the pattern with1 in thei-th bit and
0 elsewhere. Letα + β denote the pattern obtained from
bitwise XOR the patternsα andβ. Then for any pattern
α ∈ {0, 1}m and any position vectorP = {pi}, i ∈ [l], we
have the following identity:

l
∑

i=1

(−1)iGα+epi Gα+p+epi = 0. (4)

More symmetrically, letα, β ∈ {0, 1}m be any patterns,
and letP = {pi} = α + β, i ∈ [l], be their bitwise XOR as
a position vector. Then

l
∑

i=1

(−1)iGα+epi Gβ+epi = 0. (5)

Theorem 4.2 says that a tensorG = (Gi1,...,im) is realiz-
able as the standard signature of some planar matchgate iff
it satisfies all the parity requirements and (4) for allα and
P (or equivalently (5) for allα andβ).

A signature is called asymmetric signatureif its entries
only depend on the cardinality of the subset of removed ex-
ternal vertices. Letzi be the value with a subset of cardi-
nality i removed. Then a symmetric signature can be de-
noted more succinctly as[z0, . . . , zm]. In the framework
of holographic algorithms, symmetric signatures are partic-
ularly important, because they have a clear combinatorial
meaning. For standard symmetric signatures we have

Lemma 5.1. SupposeΓ is an even matchgate with sym-
metric standard signature[z0, . . . , zm]. Then for all oddi,
zi = 0, and there existr1 andr2 not both zero, such that for
every even2 ≤ k ≤ m,

r1zk−2 = r2zk.



Proof. The parity condition is obvious.
Form ≤ 3 the conditionr1zk−2 = r2zk is always satis-

fiable for somer1 andr2 not both zero.
Let m ≥ 4, we use matchgate identities (4). Consider

the pattern1000α whereα has Hamming weight2i, and
0 ≤ 2i ≤ m − 4. Let the position vector be11110 . . .0.
Then (4) gives

0 = G0000αG1111α − G1100αG0011α

+G1010αG0101α − G1001αG0110α.

It follows from symmetry that the last two terms cancel and
we getz2iz2i+4 = (z2i+2)

2.
Also, if m is even then consider the pattern1000α and

the position vector1111β, whereα = 0m−4 and β =
1m−4. Then we have

0 = G0000αG1111β − G1100αG0011β

+G1010αG0101β − G1001αG0110β ± . . . .

The terms cancel except the first two, from which we get
z0zm = z2zm−2.

Similarly if m is odd, we consider the pattern1000 . . .0
and the position vector1111 . . .10 and we can get
z0zm−1 = z2zm−3.

The lemma follows from this.

Similarly one can prove

Lemma 5.2. SupposeΓ is an odd matchgate, with sym-
metric standard signature[z0, . . . , zm]. Then for all eveni,
zi = 0, and there existr1 andr2 not both zero, such that for
every odd3 ≤ k ≤ m,

r1zk−2 = r2zk

Using the fact that the signatures are symmetric, it can be
proved that the set of useful Grassmann-Plücker Identities
considered here already constitutes a complete set. It fol-
lows from the characterization theorem for matchgates, that
the requirements of Lemma 5.1, and Lemma 5.2 are both
necessary and sufficient.

Another way to express this is

Theorem 5.1. A symmetric signature[z0, . . . , zm] of a pla-
nar matchgate withevencardinality is realizable iff for all
oddi, zi = 0, and there exist constantsr1, r2 andλ, such
thatz2i = λ · (r1)

⌊m/2⌋−i · (r2)
i, for 0 ≤ i ≤ ⌊m

2 ⌋.
A symmetric signature[z0, . . . , zm] of a planar match-

gate with odd cardinality is realizable iff for all eveni,
zi = 0, and there exist constantsr1, r2 and λ, such that
z2i−1 = λ · (r1)

⌈m/2⌉−i · (r2)
i−1, for 1 ≤ i ≤ ⌈m

2 ⌉.

Given an array of values forming a kind of geometric
progression as above, the general theory guarantees that
there exists a planar matchgate whose signature is the given

array. It is a curious fact that the only construction realiz-
ing this planar matchgate is via the general proof, and thus
via Pfaffian, as follows: We first construct a complete graph
with every edge having the same weight. This is given by
the proof of Theorem 4.2. For that graph it can be checked
that the Pfaffian values are the correct values, as in a (naked)
character. Then the planar embedding and the crossover
gadget from [1, 13] are used to produce a planar match-
gate with the given signature. In particular there will be
someO(m2) extra internal nodes ifm is the number of ex-
ternal nodes (arity) of the matchgate. We do not know of
any direct construction of a planar matchgate with the given
signature, even for this simple case.

6 Conclusions

Valiant’s new theory of matchgate computations is an ex-
traordinarily fresh attempt at exploring and devising new
algorithmic approaches to problems. It has already yielded
highly non-trivial results, such as his classical simulation
of a fragment of quantum circuits, and his holographic al-
gorithms. But a full account of the capabilities of match-
gate computations is far from being clear. We presented in
this paper some fundamental results concerning the building
blocks of his theory, namely the matchgates. Our goal here
is theory-building, not so much as problem-solving. We be-
lieve that it is essential to gain a better understanding of
these matchgates before one can get a full picture of match-
gate computations [1, 16]. It is hoped that results in this pa-
per will pave the way for some in-depth study of Valiant’s
new theory. In [1], we applied our results on matchgates
to obtain some negative results of holographic algorithms.
In [16] Valiant has obtained some important lower bound
for holographic algorithms using results of this paper.
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Appendix

Graphs and Pfaffians

Let G = (V, E, W ) be a weighted undirected graph, where
V is the set of vertices represented by integers,E is the
set of edges andW are the weights of the edges. In gen-
eral,V = {k1, . . . , kn} wherek1 < . . . < kn. We repre-
sent the graph by a skew-symmetric matrixM , called the
(skew-symmetric adjacency) matrix ofG, whereM(i, j) =
w(ki, kj) if i < j, M(i, j) = −w(ki, kj) if i > j, and
M(i, i) = 0. From here on, we will useG to represent
both the graph and its matrix, whenever the meaning is clear
from the context.

The Pfaffian of ann × n skew-symmetric matrixM is
defined to be0 if n is odd,1 if n is 0, and ifn = 2k where
k > 0 then it is defined as

Pf(M) =
∑

π

ǫπw(i1, i2)w(i3, i4) . . . w(i2k−1, i2k),

where

• π =

(

1 2 . . . n
i1 i2 . . . in

)

, is a permutation.

• summation is over all permutationsπ where i1 <
i2, i3 < i4, . . . , i2k−1 < i2k and i1 < i3 < . . . <
i2k−1, and

• ǫπ ∈ {−1, 1} is the sign of the permutationπ. An-
other equivalent definition ofǫπ is that it is the sign
or parity of the number ofoverlappingpairs where a
pair of edges(i2r−1, i2r), (i2s−1, i2s) is overlapping
iff i2r−1 < i2s−1 < i2r < i2s or i2s−1 < i2r−1 <
i2s < i2r.

The Pfaffian is computable in polynomial time. In particular
(Pf(M))2 = det(M).

A matching is a subset of edges such that no two edges
share a common vertex. A vertex is said to be saturated if
there is a matching edge incident to it. A perfect matching
is a matching which saturates all vertices.

There is a graph-theoretic interpretation of the Pfaf-
fian. If M is the matrix of a graphG, then there is
a one-to-one correspondence between monomials in the
Pfaffian and perfect matchings inG. The monomial
w(i1, i2) . . . w(i2k−1, i2k) in Pf(M) corresponds to the
perfect matching{(i1, i2), . . . , (i2k−1, i2k)} in G. The con-
dition on the permutation implies that every perfect match-
ing corresponds to exactly one monomial. The coefficient
ǫπ of this monomial is the parity of the number of overlap-
ping pairs of edges, in the sense defined earlier.

If M is an n × n matrix andA = {i1, . . . , ir} ⊆
{1, . . . , n}, thenM [A] denotes the matrix obtained after
deleting fromM , the rows and columns indexed by ele-
ments ofA. We also denote byM(A) = M [A], whereA is



the complement ofA. The Pfaffian Sum ofM is a polyno-
mial over indeterminatesλ1, λ2, . . . , λn defined as

PfS(M) =
∑

A

(

∏

i∈A

λi

)

Pf(M [A])

where the summation is over the2n submatrices obtained
from M by deleting some subsetA of indices. The Pfaffian
Sum ofM is also computable in polynomial time for any
values ofλi. We will only need instances where eachλi is
fixed to be0 or 1.

Extended Main Theorem

In this Appendix, we give an extension of the Main Theo-
rem proved by Valiant in [12]. It is a minor extension which
was needed in Section 3.

Let Γ = (G, X, Y, T ) be a matchgate. Let us callΓ, an
evenmatchgate ifPfS(G\Z) is zero wheneverZ ⊆ X ∪ Y
has odd size and call itodd if PfS(G\Z) is zero whenever
|Z| is even. Let us modify the definition of a matchcircuit to
allow parallel edges to have weight−1. Then we can prove
the followingExtended Main Theorem.

Theorem 7.1. [Extended Main Theorem] Consider a
matchcircuitΓ composed of gates as in [12]. Suppose that
every gate is:

1. a gate with diagonal character matrix,

2. an even gate applied to consecutive bits
xi, xi+1, . . . , xi+j for somej ≥ 0,

3. an odd gate applied to consecutive bits
xi, xi+1, . . . , xi+j for somej ≥ 0, or

4. an arbitrary gate on bitsx1, . . . , xj for somej ≥ 1.

Suppose also that every parallel edge above any odd match-
gate, if any, has weight−1 and all other parallel edges have
weight1. Then the character matrix ofΓ is the product of
the character matrices of the constituent matchgates, each
extended to as many inputs/outputs as those ofΓ.

Proof. The only kind of overlap that we need to worry
about in the proof of the Main Theorem in [12] is that be-
tween parallel and external edges of a matchgate. By the
definition of an odd gate, the only non-zero in its charac-
ter matrix can be in positions which correspond to an odd
number of inputs/outputs being matched externally. Any
parallel edge above a matchgate has an overlap with any of
its external edges that are present. Since only those match-
ings make a non-zero contribution when there are an odd
number nodes matched externally, any such parallel edge
overlaps with an odd number of external edges; thus con-
tributing a− sign which cancels with its own weight of−1.
The rest of the proof is exactly as in [12]

Identities for Matchgates with Omittable
Nodes

Lemma 7.1. Consider any GP identity such that all the
Pfaffians appearing in it are Pfaffians of sub-matrices with
some input/output nodes and/or the omittable node deleted.
Remove any terms which have an odd number of indices
deleted. Write each remaining term as a Pfaffian sum of a
matrix with a subset of inputs/outputs deleted. Then it is a
useful identity and is independent ofn. Therefore, it is a
matchgate identity.

Theorem 7.2. Letk, l be non-negative integers. LetB be a
2k ×2l matrix. ThenB is the character matrix of ak-input,
l-output matchgateΓ if and only if B satisfies all the GP
identities.

Proof. The proof is almost the same as for the case with-
out omittable nodes. As earlier, let’s assume, WLOG, that
B2k−1,2l−1 = 1. The matchgateΓ is a complete graph
k + l + 1 vertices. It hask inputs andl outputs and one
omittable node. The weight of the edge joining nodesi and
j is the appropriate modifier times the entry of the matrix
B which corresponds toi, j being deleted. Note that now,
this entry might have total Hamming weight (as far as in-
puts/outputs are concerned) eitherk + l − 1 or k + l − 2,
depending on whether eitheri or j is the omittable node or
not. Let the skew-symmetric adjacency matrix ofΓ beM .
We claim that the character matrix ofΓ, sayA, is equal to
B. By definition, all the entries ofB with total Hamming
weight at leastk + l − 2 are equal to those inA. Now
we proceed by downward induction on the total Hamming
weight H(i) + H(j). Consider any other entryBij such
thatH(i) + H(j) is less thank + l − 2.

Let a1 ≤ . . . ≤ ar be the bits that are1 in i and j.
Depending on the parity ofr, we either need to delete the
omittable node, saya, or keep it. LetS be the set of nodes
that we need to delete to get this entry ofB. Let 1 ≤ a′ ≤
k + l be an index not inS. Consider the GP identity with
I = Γ − S ∪ {a′} which we’ll denote byI = {Ŝ, â′} and
let J = {a′}. This identity looks like the following:

PfM [S]PfM () =
∑

b∈I

(±)PfM [{b, a′} ∪ S]PfM (b, a′)

Note thatPfM () = 1 = A2k−1,2l−1 = B2k−1,2l−1. The
right hand side is a sum of products of two terms. Each
term is the Pfaffian sum ofM with a superset ofa1, . . . ar

removed. These correspond to entries ofA andB in po-
sitions with total Hamming weight more thanr. SinceB
is equal toA on all such entries and sinceB satisfies the
GP identities, we see thatBij = Aij . This completes the
proof.
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Figure 1. The figure shows the matchcircuit Γ′′ used in the proof of theorem 3.2. Suppose αr flips
the second bit only and αc flips the first bit only. Then Γ2 and Γ4 are equal to Γ(2) i.e. they flip their
input; and Γ1 and Γ3 simply transmit their input. Therefore, the parallel edge a bove Γ2 has weight −1
and all other parallel edges, in particular the one above Γ3 have weight 1. In the general case when
there are k-inputs and l-outputs, if any matchgate flips its input, all the parallel e dges above it have
a weight −1.

A
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C

Figure 2. An example of a matchcircuit composed of matchgate s A, B and C. A is a 3-input, 3-output
matchgate while B and C are 2-input, 2-output matchgates. The boldest line represe nt parallel edges,
the lightest represent connectingedges and the rest are externaledges. The nodes in the matchcircuit
are numbered in increasing order from left to right. The five l eftmost nodes are its inputsand the five
rightmost ones are its outputs.


