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Abstract

Contention resolution schemes (CRSs) are powerful tools for obtaining “ex post feasible” solutions from
candidates that are drawn from “ex ante feasible” distributions. Online contention resolution schemes (OCRSs),
the online version, have found myriad applications in Bayesian and stochastic problems, such as prophet
inequalities and stochastic probing.

When the ex ante distribution is unknown, it was unknown whether good CRSs/OCRSs exist with no
sample (in which case the scheme is oblivious) or few samples from the distribution. In this work, we give a
simple 1

e
-selectable oblivious single item OCRS by mixing two simple schemes evenly, and show, via a Ramsey

theory argument, that it is optimal. On the negative side, we show that no CRS or OCRS with O(1) samples
can be Ω(1)-balanced/selectable (i.e., preserve every active candidate with a constant probability) for graphic
or transversal matroids.

1 Introduction

Contention Resolution Schemes (CRSs) were introduced by Chekuri et al. [8] as a tool for rounding fractional
solutions in submodular function maximization. These schemes allow one to first optimize, under feasibility
constraints, a continuous extension of a discrete function and then round the fractional solution to an integral
feasible solution. Feldman et al. [16] extended this framework to online settings, and the resulting Online Contention
Resolution Schemes (OCRSs) turn out to be powerful tools for a wide range of applications in Bayesian and
stochastic online optimization, such as prophet inequalities [23, 15], stochastic probing [20, 21, 17], and posted
pricing mechanisms [7].

More concretely, given a feasibility system, an ex ante feasible solution is a distribution x over feasible sets.
According to such a distribution, the elements are included in the solution in a correlated manner. In many
problems, however, the elements are selectable, or active, only independently according to the marginal distributions
given by x. A contention resolution scheme is a procedure indexed by the distribution x that, given the set of
active elements, must select an (ex post) feasible subset of active elements, and aims to guarantee that each
element, when active, is selected with a constant probability c. For many applications, this guarantees to retain at
least a c fraction of the objective, compared with that of the (unattainable) ex ante solution. An online contention
resolution scheme sees each element’s status (of being active or not) in an online fashion, and must decide whether
to select an element upon its arrival.

In many Bayesian or stochastic problems, it is interesting to study whether good algorithms exist in the
absence of the distributional knowledge, and, when sample access is allowed to make up for this lack of knowledge,
how the performance of best algorithms scales with the number of samples. For example, in revenue optimal
mechanism design, mechanisms with no knowledge of or only sample access to the type distributions are known as
prior-free or prior-independent mechanisms, and has seen a large literature devoted to them [e.g. 18, 22, 11, 9, 19].
As another example, in the single-item prophet inequality problem, a single sample suffices for an algorithm to
match the performance of an optimal one equipped with full knowledge of the distribution [26]. We investigate in
this work similar problems for CRS and OCRS when the feasibility system is given by a matroid. In particular, we

∗ITCS, Shanghai University of Finance and Economics. {fuhu, lu.pinyan, tang.zhihao}@mail.shufe.edu.cn
†University of British Columbia. abner7@cs.ubc.ca
‡IIIS, Tsinghua University. {wuhx18, zqf18}@mails.tsinghua.edu.cn
§CFCS, Computer Science Dept., Peking University. jinzhao.wu@pku.edu.cn

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited268

D
ow

nl
oa

de
d 

04
/1

4/
22

 to
 1

83
.1

93
.1

71
.2

01
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



give a simple, provably optimal, algorithm for single-item OCRS with no distributional knowledge (x), and we
show that no good CRS or OCRS with O(1) samples exist for graphic or transversal matroids.

We now introduce more formalism in order to discuss our discoveries.

1.1 Oblivious CRS and OCRS A CRS/OCRS is defined with respect to of a universe U and a downward-
closed feasibility system F ⊆ 2U . An ex ante feasible solution is a distribution over sets in F , represented by a
vector x in the polytope associated with F : x ∈ PF := Conv({1S}S∈F ), where Conv(·) is the operation of taking
the convex hull, and 1S is the indicator vector for a set S. A convex decomposition of x using the vertices of PF
gives rise to such a distribution, and xi is the marginal probability with which element i is included when one
draws from this distribution. In many applications, either one is prevented from sampling from this distribution,
or such a sample does not serve as a good solution; rather, one observes that each element i is selectable, or active,
independently, with probability xi. A good CRS maps the set of active elements to a feasible subset, guaranteeing
that each element, when active, is kept with a constant probability.

Definition 1.1. ([8]) A Contention Resolution Scheme (CRS) π for F is a procedure indexed by ex ante feasible
solutions x ∈ PF . For every x ∈ PF , for each S ⊆ U , πx(·) returns a random set πx(S) such that, with
probability 1, πx(S) ∈ F and πx(S) ⊆ S. A CRS π is c-balanced, for c ∈ [0, 1], if for each x ∈ PF , for each i ∈ U ,
i ∈ πx(R(x)) with probability at least cxi, where R(x) is a random subset of U such that each element j is in R(x)
independently with probability xj.

A CRS π is said to be deterministic if πx(·) is deterministic for each x. It is oblivious if, for every S ⊆ U ,
the distribution of πx(S) and the distribution of πy(S) are identical for any two x,y ∈ PF . 1

The elements in the random set R(x) are said to be active.

Definition 1.2. ([16]) An Online Contention Resolution Scheme (OCRS) with respect to F is a procedure
indexed by ex ante feasible solutions x ∈ PF and an arrival order of elements in U . The elements arrive according
to the order, and is revealed whether it is active and, if so, the OCRS must decide irrevocably whether to accept it
in the output T . An OCRS is c-selectable, for c ∈ [0, 1], if for any x ∈ PM and any arrival order, if each element i
is active independently with probability xi, it is kept by the algorithm in the output with probability at least cxi.

An OCRS is oblivious if, for any arrival order, at any point in the procedure, given the set of elements that
have arrived and those that have been accepted, and a newly arrived active element i, the probability with which the
algorithm accepts i is the same regardless of x.

In Definition 1.2, the arrival order may depend on x but is fixed before the procedure without knowledge of
the set of active elements. It is said to be from an offline adversary. Both more powerful adversaries, such as
online and almighty ones, and weaker adversaries, such as random order ones, have been studied in the literature;
we focus on the offline adversary model throughout this work. Without loss of generality, we assume the elements
arrive in the order 1, 2, . . . , n.

In the literature, especially that on OCRSs, the case where F is a matroid on U has been studied the most.
We focus on this case in this paper, and denote the matroid by M.

As an illustration, consider the simplest OCRS for the rank-1 uniform matroid. Here x satisfies
∑
i xi ≤ 1

and each element i is active independently with probability xi. An OCRS may select at most one element. It is
easy to see that no deterministic oblivious CRS can be Ω(1)-balanced even in this simple setting, as pointed out
by Chekuri et al. [8]. Consider the randomized OCRS that accepts an active element with probability 1

2 whenever
nothing has been selected. By the end, the algorithm selects nothing with probability at least 1

2 , and hence at the
arrival of each element, with probability at least 1

2 nothing has been selected; the element, if active, therefore has
a chance of at least 1

4 for being selected. This OCRS is hence 1
4 -selectable. Note that it is oblivious, since nowhere

does it make use of the distribution x. An OCRS with knowledge of x can fine-tune its probability of accepting an
active element i: if nothing has been accepted when i arrives, it may accept i with probability 1

2/(1−
1
2

∑
j<i xj).

By a simple induction, it can been that each element i is accepted with probability precisely 1
2 conditioning on its

being active, and with probability precisely 1 − 1
2

∑
j<i xj , the algorithm has accepted nothing when i arrives.

This OCRS that first appeared in [3] is 1
2 -selectable and is optimal for this setting.

1In [8], Chekuri et al. additionally require an oblivious CRS to be deterministic. We remove this requirement. This distinction is
important for all the results in this work.
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1.2 Main Results Our first main result is a simple 1
e -selectable oblivious OCRS for the uniform rank 1 matroid,

beating the 1
4 -selectable oblivious OCRS best known so far. We also show that our scheme is the optimal oblivious

OCRS in this setting.
To motivate the design of our OCRS, consider the following simple, almost wild thought experiment: when

processing element i, the non-oblivious, 1
2 -selectable OCRS above uses information of x only for the elements

that come before i; when we do not know x, what if we see the arrived elements as a (partial) sample from the
underlying distribution, and emulate the optimal non-oblivious OCRS, as if the distribution is just the empirical
distribution given by that sample? To substantiate this thought, when the first active element i arrives, since no
preceding element is active, we are led to crudely estimate

∑
j<i xj to be 0, and we accept i with probability 1

2 ;
when the second active element i′ arrives, if we did not accept the first active element, then we would estimate∑

j<i′ xj to be 1, and we should accept i′ with probability 1
2/(1−

1
2 ) = 1. To summarize, the resulting algorithm

accepts the first active element with probability 1
2 ; otherwise, it accepts the second active element. The scheme is

obviously oblivious.
In Section 2, we show that precisely this OCRS is 1

e -selectable. It may be a surprise that this simple algorithm
is in fact optimal. Our proof of optimality uses Ramsey theory, following a strategy introduced by Correa et
al. [10].

Going beyond the uniform rank 1 matroids, Chekuri et al. [8], among other constructions, gave an oblivious Ω(1)-
balanced CRS for the unsplittable flow problem in trees, which implies an oblivious Ω(1)-balanced CRS for laminar
matroids. For the general matroid setting, it was not known prior to this work whether Ω(1)-balanced/selectable
oblivious CRS/OCRS exists. We show in Section 3 that no oblivious CRS can be Ω(1)-balanced even in graphic
or transversal matroids. This immediately also implies that no oblivious Ω(1)-selectable OCRS exists in these
settings. Our proof shows that a good oblivious CRS must be able to distinguish, given the set of active elements,
between a uniform distribution and a distribution with a hidden structure buried, which is statistically impossible.
In fact, our construction shows that, even if a CRS has access to a constant number of samples of R(x), it still
cannot be Ω(1)-selectable. We note that these impossibility results are not computational, and are therefore not
conditional on complexity assumptions.

1.3 Further Related Works CRSs were first developed in the submodular optimization literature [8, 6], and
are closely related to correlation gaps [2]. The application in submodular optimization requires an additional
monotonicity property on the CRS; both monotone and non-monotone CRSs are interesting objects of study
in various settings (e.g. [5]). As noted above, Chekuri et al. [8] defined oblivious CRSs with the additional
requirement that they be deterministic, a constraint that we relax in our definition. It is not difficult to see that
no oblivious, deterministic Ω(1)-balanced CRS exists even for choosing one element from a set of two. Showing no
good randomized oblivious CRS exists for matroids is more challenging.

OCRSs were formally defined by Feldman et al. [16], although a problem that is equivalent (under disguise) had
been studied by Alaei [3] for the uniform matroids. Feldman et al. gave a 1

4 -selectable OCRS for matroids. Lee and
Singla [24] obtained a 1

2 -selectable matroid OCRS by a reverse reduction to the matroid prophet inequalities, albeit
requiring the latter to be competitive against the stronger ex ante optimal. Ezra et al. [15] gave a 0.337-selectable
OCRS for bipartite matchings. Adamczyk and Wlodarczyk [1] studied OCRSs when the elements arrive in a
uniformly random order, and obtained, among other results, 1

p+1 -selectable schemes for p matroid intersections in

this setting. Lee and Singla [24]’s reduction also gave a (1− 1
e )-selectable matroid OCRS with random arrival for

the uniform rank 1 matroid.
Dughmi [12, 13] in a recent series of two works showed that the celebrated matroid secretary problem [4]

is equivalent to the existence of good universal OCRSs for general matroids. Interestingly, before showing this
equivalence, in the first paper [12], Dughmi conjectured oblivious OCRSs to be a stepping stone toward the matroid
secretary problem. Even though this was bypassed in the final proof of the equivalence [13], it is suggestive that
oblivious OCRSs may find other applications.

2 An Optimal Oblivious Single Item OCRS

In this section we give an optimal oblivious OCRS when at most one element can be accepted, i.e., for the uniform
rank 1 matroid. This is known as the single item setting. For a uniform rank 1 matroidM on the universe U = [n],
x ∈ PM means xi ≥ 0 for each i, and

∑n
i=1 xi ≤ 1. Feldman et al. [16] defined a general, simple family of OCRSs
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that they call greedy. In the single-item case, only one such algorithm makes sense, and we term it the greedy
algorithm in this setting:

Definition 2.1. ([16]) The Greedy algorithm accepts with probability 1 the first active element.

Our next algorithm, to be mixed with the Greedy algorithm, is equally simple:

Definition 2.2. The Accept Second algorithm passes the first active element and accepts the second active one.

Sections 2.1 and 2.2 prove the following two theorems, respectively.

Theorem 2.1. Running the Greedy algorithm and the Accept Second algorithm each with probability 1
2 is a

1
e -selectable oblivious single element OCRS.

Theorem 2.2. For any ε > 0, no oblivious single-item OCRS is ( 1
e + ε)-selectable.

2.1 Analysis of Selectability To prove Theorem 2.1, we need to show that for every i ∈ [n], Pr[i is accepted |
i is active] ≥ 1

e . Since our algorithm is an even mixture of Greedy and Accept Second,

Pr [i is accepted | i is active] =
1

2
·Pr [i is the first or second active element | i is active] .

Conditioning on i being active, the probability that i is the first active element equals
∏
j<i(1− xj), and the

probability that i is the second active element equals
∑
j<i xj

∏
k<i,k 6=j(1− xk). Therefore,

Pr [i is accepted | i is active] =
1

2

∏
j<i

(1− xj) +
∑
j<i

xj
∏

k<i,k 6=j

(1− xk)

 .
For each i ≥ 0, define fi(x)

def
=
∏
j≤i(1− xj) +

∑
j≤i xj

∏
k≤i,k 6=j(1− xk). We now lower bound the value of

fi(x) for all i and all possible choices of x.

Lemma 2.1. fn(x) ≥ (1 − 1
n )n + (1 − 1

n )n−1 for all x ∈ {x | ∀i, xi ≥ 0;
∑n
i=1 xi ≤ 1}, where the equality is

achieved when x = ( 1
n ,

1
n , · · · ,

1
n ).

Proof. We prove the lemma by induction. The base case when n = 1 is trivial. For n ≥ 2, since the domain space
{x | ∀i, xi ≥ 0;

∑n
i=1 xi ≤ 1} is compact and the function fn is continuous, we have that the minimum of fn is

attained by some x∗ ∈ {x | ∀i, xi ≥ 0;
∑n
i=1 xi ≤ 1}.

Let xuniform = ( 1
n ,

1
n , · · · ,

1
n ). We have fn(xuniform) = (1− 1

n )n + (1− 1
n )n−1.

Next, we prove that fn(x∗) ≥ fn(xuniform) by contradiction. Otherwise x∗ 6= xuniform and there exists two
indices i, j such that x∗i 6= x∗j . Fix x∗-{i,j} and consider the following two quantities.

p0 =
∏

k∈[n]\{i,j}

(1− xk); p1 =
∑

k∈[n]\{i,j}

xk
∏

t∈[n]\{i,j,k}

(1− xt).

We rearrange the formula of fn(x∗) as the following.

fn(x∗) = (1− x∗i )(1− x∗j ) · p0 + x∗i (1− x∗j ) · p0 + x∗j (1− x∗i ) · p0 + (1− x∗i )(1− x∗j ) · p1
= (1− x∗i x∗j ) · p0 + (1− x∗i )(1− x∗j ) · p1
= p0 + p1 − (x∗i + x∗j ) · p1 + x∗i x

∗
j · (p1 − p0).(2.1)

We now examine two cases based on the relation between p0 and p1. We construct x′ by adjusting the two
coordinates x∗i and x∗j while keeping all other variables the same as x∗-{i,j}.

• If p0 > p1, let x′i = x′j =
x∗i +x

∗
j

2 . Since x∗i 6= x∗j , we have x′ix
′
j > x∗i x

∗
j . By equation (2.1), we have

fn(x′) < fn(x∗), that contradicts the optimality of x∗.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited271

D
ow

nl
oa

de
d 

04
/1

4/
22

 to
 1

83
.1

93
.1

71
.2

01
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



• If p0 ≤ p1, let x′i = 0 and x′j = x∗i + x∗j . Since x′ix
′
j = 0 and by equation (2.1), fn(x′) ≤ fn(x∗). Observe

that when x′i = 0, x′-i is an (n − 1)-dimensional vector and fn−1(x′−i) = fn(x′). Applying the inductive
hypothesis, we have(

1− 1

n− 1

)n−1
+

(
1− 1

n− 1

)n−2
≤ fn(x′) ≤ fn(x∗) < fn(xuniform) =

(
1− 1

n

)n
+

(
1− 1

n

)n−1
,

which contradicts the fact that (1− 1
n )n + (1− 1

n )n−1 is monotonically decreasing in n.

Finally, since (1− 1
n )n + (1− 1

n )n−1 is monotonically decreasing in n, with the limit equal to 2
e , we conclude

that our algorithm is 1
e -selectable.

2.2 Optimality In this section, we prove Theorem 2.2. We first provide a road map of our proof.

• We first define a restricted class of algorithms called counting-based strategies and prove that no counting-
based strategy is strictly better than 1

e -selectable.

• Next, we prove that, for any oblivious OCRS, there must be a subset of elements on which it behaves like a
counting-based strategy. This is the most technical step and makes use of Ramsey theorem.

• Finally, we embed the hard instance into the subset and conclude that the hard instance for counting-based
strategies applies to all oblivious algorithms.

We start with defining counting-based strategies.

Definition 2.3. An OCRS is a counting-based strategy if it is fully characterized by an infinite sequence of
probabilities (p1, p2, . . . ) as follows: when the algorithm sees the k-th active item, the algorithm accepts (and stops)
with probability pk.

For instance, the algorithm in Theorem 2.1 is a counting-based strategy characterized by the sequence
( 1
2 , 1, 0, . . . ). We now show that it is optimal among all counting-based strategies.

Lemma 2.2. For every ε > 0, there exists a sufficiently large n, such that for the uniform instance with n items
(i.e. xi = 1

n for all i ∈ [n]), any counting-based strategy cannot achieve
(
1
e + ε

)
-selectability.

Proof. To prove this, it suffices to show that Pr[n is selected | n is active] ≤ 1
e + ε.

Let qk be the probability of having exactly k elements active before n. On the uniform instance,

qk =

(
n− 1

k

)
1

nk

(
1− 1

n

)n−1−k
≤ nk

k!
· 1

nk
·
(

1− 1

n

)n−1−k
=

1

k!

(
1− 1

n

)n−1−k
.

When k ≥ 3, qk ≤ 1
k! <

1
e . When k < 3, qk ≤

(
1− 1

n

)n−1−k → 1
e when n→∞. Hence, there is a sufficiently

large n such that qk ≤ 1
e + ε for all k. Then

Pr [n is selected | n is active] =

n∑
k=1

qk−1

k−1∏
i=1

(1− pi) · pk ≤
(

1

e
+ ε

) n∑
k=1

k−1∏
i=1

(1− pi) · pk

=

(
1

e
+ ε

)
·

(
1−

n∏
i=1

(1− pi)

)
≤ 1

e
+ ε,

which concludes the proof.
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Next, we prove that no oblivious OCRS can do better than counting-based strategies in the worst case even
when the total number of items N is known to our algorithm.

Given N , any oblivious OCRS can be characterized by a function f : 2[N ] → [0, 1] that specifies the behaviour
of the OCRS. In particular, for each set T ∈ [N ], f(T ) represents the probability that we select the (i = maxT )-th
item at step i given that T is the set of active items so far and we have not selected any item yet.

Intuitively, an oblivious OCRS has no information about the vector x and hence, its decision rule should not
depend on the indices of the active items. Indeed, for a counting-based strategy, the corresponding function f only
depends on the size |T | of the active set. That is, f(T ) = p|T | for all T , where {pi} is the probability sequence of
the counting-based strategy.

To formalize the intuition, we prove that for any oblivious OCRS, there exists a subset of items S ⊆ [N ]
on which the algorithm performs like a counting-based strategy. We define (ε, n)-approximate counting-based
strategies on S.

Definition 2.4. An oblivious OCRS A is (ε, n)-approximate to a counting-based strategy O on S if f(T ) ∈
[p|T |, p|T | + ε] for all T ⊆ S and |T | ≤ n, where (p1, p2, · · · ) is the probability sequence of O.

Lemma 2.3. For any integer n,m and ε > 0, there exists a sufficiently large integer N such that for any oblivious
OCRS A, there exists a subset S ⊆ [N ] of size m such that A is (ε, n)-approximate to a counting-based strategy on
S.

We first use the lemma to give a proof of Theorem 2.2, before proving the lemma itself.
Proof of Theorem 2.2 By Lemma 2.3, for any integer n and ε > 0, there exists an integer N such that

for any oblivious OCRS A, there exists S ⊆ [N ] of size n such that A is (ε, n)-approximate to a counting-based
strategy O on S.

Let (p1, p2, · · · ) be the corresponding probability sequence of O. Consider any instance that is supported on
S, i.e. xi = 0 for all i 6∈ S. We have that for each i ∈ S,

Pr [A selects i | i is active]

=
∑

T3i;T⊆S

Pr [T − i are the active items before i and are not selected by A] · f(T )

≤
∑

T3i;T⊆S

Pr [T − i are the active items before i and are not selected by O] · (p|T | + ε)

≤ Pr [O selects i | i is active] + ε,

where the first inequality follows from the fact that whenever we have a chance to select an item, O selects it with
smaller probability than A (by Definition 2.4).

Therefore, if A is ( 1
e + 2ε)-selectable, O is ( 1

e + ε)-selectable for all instances defined on S. However, this
contradicts Lemma 2.2, that states any counting-based strategy is no better than ( 1e + ε)-selectable for the uniform
instance on S, i.e. xi = 1

n for i ∈ S. This concludes the proof of the theorem.
Proof of Lemma 2.3. We use the Hypergraph Ramsey theorem. For completeness, we include a few basic

concepts of hypergraphs. A hypergraph is called a k-uniform hypergraph if each of its edges contains k vertices. A
complete k-uniform hypergraph is a hypergraph G = (V,E) where E is the set of all size-k subsets of V . A clique
in a k-uniform hypergraph is a subset S ⊂ V such that all size-k subsets of S are in E.

Lemma 2.4. (Hypergraph Ramsey Theorem [25, 14]) Given any positive integer n0, k and c, there is an
integer n1 which has the following property: for any complete k-uniform hypergraph with more than n1 vertices, no
matter how we color its edges with c colors, there is always a monochromatic clique of size n0.

We now prove Lemma 2.3 by induction. For the base case when n = 1, consider a graph G with N =
(
b 1ε c+ 1

)
m

vertices. Given an oblivious OCRS, we color each vertex i with color b 1ε f({i})c. Since there are at most b 1ε c+ 1
different colors, by the pigeonhole principle, there are at least m vertices sharing the same color. Let S be the set
of these m vertices and c be their color. We claim that A is (ε, 1)-approximate to any counting-based strategy on
S with p1 = cε.
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Suppose the lemma holds for n− 1, we consider the case of n. Applying Lemma 2.4 to n0 = m, k = n and
c = b 1ε c+ 1, let n1 be the sufficiently large number such that for any complete k-uniform hypergraph with more
than n1 vertices, no matter how we color its edges with c colors, there exists a monochromatic clique of size n0.

By induction hypothesis, there exists N such that for any oblivious OCRS π, there exists a subset S0 ⊆ [N ] of
size n1 such that π is (ε, n − 1)-approximate to a counting-based strategy on S0. Now we consider a complete
n-uniform hypergraph G whose vertices are S0. For each hyperedge T ⊂ S0 of size n, we color the edge with color
b 1ε f(T )c. Observe that there are at most b 1ε c + 1 different colors. By Lemma 2.4, this hypergraph includes a
monochromatic clique of size m. We denote the vertex set of this clique by S and let c be its corresponding color.
By definition of the hypergraph, we have that f(T ) ∈ [cε, (c+ 1)ε] for T ⊂ S and |T | = n. Combining this with
the inductive hypothesis that π is (ε, n− 1)-approximate to a counting-based strategy on S ⊆ S0, we conclude
that π is further (ε, n)-approximate to a counting-based strategy on S with p|T | = cε.

3 Non-existence of Ω(1)-selectable Oblivious CRSs for Matroids

In this section we show that, without knowledge of x, Ω(1)-selectable OCRS is impossible for general matroids. In
fact, even in the offline setting, Ω(1)-balanced CRS does not exist for graphic or transversal matroids. Furthermore,
no such CRS exists even with a constant number of samples. We provide the proofs for graphic matroids and
transversal matroids in Section 3.1 and Section 3.2, respectively.

Theorem 3.1. For any c ∈ (0, 1], there is no oblivious c-balanced CRS for graphic matroids or transversal
matroids. Moreover, the impossibility persists even if the CRS has access to O(1) samples of R(x).

3.1 Graphic Matroids Recall that a graphic matroid (E, I) is defined on an undirected graph G with edge
set E such that I ⊆ E is in I iff I is a forest in G.

Consider a complete bipartite graph KN,M with bipartition U = {u1, . . . , uN} and V = {v1, . . . , vM}. Let
δ(u) denote the set of edges incident to a vertex u ∈ U ∪ V . Let P be the polytope of the graphic matroid on it.

u1

u2

u3

u4

u5

U

v1

v2

v3

V

(a) The bipartite complete graph KN,M . Here i = 4,
edges adjacent to ui has probability xi

e = 1 of being
active, while other edges each only has probability 1/M
of being active. Here N should be a large enough number
such that N �MM .

u1

u2

u3

u4

u5

v1

v2

v3

V

U∗

(b) A realization R(x) of this instance. U∗ is the set
of all vertices on left side of degree M . If N is large
enough there will be many vertices happen to be in U∗.
These vertices in U∗ are indistinguishable to CRS, and
u4 (i = 4) is hidden between them.

Figure 1: The hard instance for graphic matroids

We give N + 1 points x1, . . . ,xN ,y in the matroid polytope P, and show that, for any c ∈ (0, 1], there are
large enough N and M , such that no oblivious CRS can be c-balanced for the graphic matroid on the complete
bipartite graph KN,M . The point y is auxiliary in the proof.
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For any i ∈ [N ], let xi be

xie :=

{
1, if e ∈ δ(ui);
1/M, otherwise.

Let y be the vector with weight 1
M on all edges, i.e., ye = 1

M for all e. Note that y = N
N+M−1

1
N

∑N
i=1 x

i.

We first verify xi ∈ P for each i, which immediately implies y ∈ P as well. Let Ti,j be the tree whose edge set
is δ(ui) ∪ δ(vj). It is easy to verify that xi is the average of the indicator vectors of Ti,j as j ranges from 1 to M ;

that is, xi = 1
M

∑M
j=1 1Ti,j

, where 1Ti,j
is the indicator vector of Ti,j . Finally consider the random set U∗ defined

as follows:

U∗ = {ui ∈ U | δ(ui) ⊆ R(y)}.

For the sake of a contradiction, suppose there is a c-balanced CRS π for P. We analize the CRS on R(y) by
considering the expected number of elements accepted from the set of edges incident to U∗ (i.e. δ(U∗)). We
will first give an upper bound using the feasibility constraints. Then we will provide a lower bound using the
assumption that the CRS is c-balanced to get a contradiction. Let π(R(y)) be the set of accepted elements, then
since the output must be an independent set, we have:

E [|π(R(y)) ∩ δ(U∗)|] ≤ E [rank(δ(U∗))] .

And the rank of δ(U∗) is just |U∗|+ |V | − 1. Observe that |U∗| follows a binomial distribution with parameters
N,M−M (each vertex ui belongs to U∗ with probability M−M independently). So we get the following upper
bound:

E [|π(R(y)) ∩ δ(U∗)|] ≤ N

MM
+M − 1.

On the other hand, E[|π(R(y)) ∩ δ(U∗)|] can be rewritten as:∑
e∈E

Pr [e ∈ π(R(y)) | e ∈ δ(U∗)]Pr [e ∈ δ(U∗)] .

Take an arbitrary edge e = (ui, vj). First note that the probability of e ∈ δ(U∗) is just the probability of ui ∈ U∗,
so it is equal to M−M . The crucial observation is that the distribution of R(y) conditioned on (ui, vj) ∈ δ(U∗)
is identical to the distribution of R(xi), so using the assumption that π is c-balanced and that (ui, vj) is always
active for xi, we get:

Pr [(ui, vj) ∈ π(R(y)) | (ui, vj) ∈ δ(U∗)] = Pr
[
(ui, vj) ∈ π(R(xi))

]
≥ c.

Since there are NM edges in total, we obtain the following lower bound:

E [|π(R(y)) ∩ δ(U∗)|] ≥ cN

MM−1 .

By putting together our upper and lower bounds, we get that:

c ≤ 1

M
+
MM−1(M − 1)

N
,

which can be arbitrarily small for N �MM and M � 1. This finishes the proof in the oblivious case.

For the case in which the CRS has access to a constant number of samples, the idea is almost the same. The
only difference is that now we define U∗ as the set of vertices u such that δ(u) is contained in every sample from
R(y) and in the final realization of R(y). If we have s samples, then each vertex has a probability M−(s+1)M of
being in U∗. The same arguments hold, we just need N �M (s+1)M for the contradiction.
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3.2 Transversal Matroids Recall that a transversal matroid M = (L, I) can be defined by a bipartite graph
G = (L t R,E) such that I ∈ I iff there is a matching in G covering I. The proof is very similar to the one
provided for graphic matroids.

Consider the transversal matroid defined by the bipartite graph G = (L tR,E) (see Figure 2a), where

• L = {li,j | i ∈ [N ], j ∈ [M ]},

• R = {ri | i ∈ [N ]} ∪ {uk | k ∈ [M − 1]},

• E = {(li,j , ri) | i ∈ [N ], j ∈ [M ]} ∪ {(li,j , uk) | i ∈ [N ], j ∈ [M ], k ∈ [M − 1]}.
In other words, L contains N sets of M vertices, namely L =

⋃
i∈[N ] Li with Li = {li,j | j ∈ [M ]}; for each Li

there is a vertex ri fully connected to it. Additionally, there is a set of M − 1 vertices in R fully connected to L.
Now, we claim that for any i′ ∈ [N ], the following point xi

′
belongs to the matroid polytope:

xi
′

li,j
:=

{
1, if i = i′;

1/M, otherwise.

l1,1

l1,2

l1,3

l2,1

l2,2

l2,3

l3,1

l3,2

l3,3

r1

r2

r3

u1

u2

(a) The bipartite graph G = (LtR,E). There are N sets
in L with M vertices each. Here i′ = 2. For each vertex
l2,j in the second set, xl2,j = 1, while vertices in the
other sets each only has 1/M probability of being active.
The vertices in set R = {u1, . . . , uM−1} ∪ {r1, . . . , rN}
are drawn on two separated sides.

l1,1

l1,2

l1,3

l2,1

l2,2

l2,3

r1

r2

r3l3,2

u1

u2

(b) A realization R(xi′) of this instance. A set belongs
to U∗ if and only if all vertices in it are active. They
are marked in blue. As long as N is large enough, there
will be many sets in U∗ with high probability. These
sets are indistinguishable to our CRS. Hence the i′-th
set is hidden inside.

Figure 2: The hard instance for transversal matroids

To see that xi
′ ∈ PM, define for each k ∈ [M ] the set Ti′,k := {li′,j | j ∈ [M ]} ∪ {li,k | i ∈ [N ]}. It is easy to

see that Ti′,k is independent (we can match each li,k with ri and use the vertices uj to match the M − 1 remaining

vertices). Notice that xi
′

is the average of the indicator vectors of Ti′,k, that is xi
′

= 1
M

∑
k∈[M ] 1Ti′,k , so x ∈ PM.

Again, let y be the vector with weight 1
M on all vertices from L. We can see that y ∈ PM since y ≤ xi

′
. The rest

of proof is almost identical to the previous proof. Instead of U∗, we define now the random set of indices:

I∗ = {i ∈ [N ] | Li ⊆ R(y)},
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and then we compute bounds for the number of accepted elements from L∗ =
⋃
i∈I∗ Li. The rank of L∗ is

|I∗|+M − 1: for each i ∈ I∗ we can match one vertex from Li to ri, and then we can match M − 1 more vertices
from L∗ using the vertices ut (it is not possible to match more vertices since the rest of the vertices from R are not
connected with L∗). Note that the size of I∗ also follows a binomial distribution with parameters N and M−M , so
we get the exact same upper bound we got before. We also get the same lower bound using equivalent arguments
and that concludes the proof.
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